Skip to main content
Log in

Learning hierarchically structured action sequences is unaffected by prefrontal-cortex lesion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study tested the impact of prefrontal-cortex lesion on learning hierarchically structured action sequences. Using a visual-manual serial reaction time task, we had subjects first perform five blocks of trials with a hierarchically structured 14-element action sequence and then tested for sequence-specific learning by introducing a pseudo-random transfer sequence. Relative to control subjects (N = 39), we found that both lateral frontal (N = 16) and medial frontal (N = 18) patients showed reduced overall performance benefits across the training phase. In contrast, the negative transfer test showed significantly increased reaction times in all patient groups, indicating robust sequence-specific learning. This learning was not significantly different from that of the control group. Taken together, the data suggest that learning hierarchically structured action sequences is unimpaired in patients with prefrontal-cortex lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fMRI. J Cogn Neurosci 16(1):127–138

    Article  PubMed  Google Scholar 

  • Burgess PW (2000) Strategy application disorder: the role of the frontal lobes in human multitasking. Psychol Res 63(3–4):279–288

    Article  PubMed  CAS  Google Scholar 

  • Burgess PW, Veitch E, de Lacy Costello A, Shallice T (2000) The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38(6):848–863

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Smith MD, DiFranco JM, Daggy AT (2001) Structural influences on implicit and explicit sequence learning. In: Medin DL (ed) The psychology of learning and motivation, vol. 40. Academic, San Diego, pp 147–182

  • Dienes Z, Berry D (1997) Implicit learning: below the subjective threshold. Psychon Bull Rev 4(1):3–23

    Google Scholar 

  • Doyon J, Owen AM, Petrides M, Sziklas V, Evans AC (1996) Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur J Neurosci 8(4):637–648

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Gaudreau D, Laforce R Jr, Castonguay M, Bedard PJ, Bedard F, et al (1997) Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34(2):218–245

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Beldarrain M, Grafman J, Pascual-Leone A, Garcia-Monco JC (1999) Procedural learning is impaired in patients with prefrontal lesions. Neurology 52(9):1853–1860

    PubMed  CAS  Google Scholar 

  • Gomez-Beldarrain M, Grafman J, Ruiz de Velasco I, Pascual-Leone A, Garcia-Monco C (2002) Prefrontal lesions impair the implicit and explicit learning of sequences on visuomotor tasks. Exp Brain Res 142(4):529–538

    Article  PubMed  Google Scholar 

  • Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A pet study. Brain 120(Pt 1):123–140

    Google Scholar 

  • Hoffmann J, Koch I (1998) Implicit learning of loosely defined structures. In: Stadler MA, Frensch PA (eds) Handbook of implicit learning. Sage Publications Inc., Thousand Oaks, pp 161–199

    Google Scholar 

  • Honda M, Deiber MP, Ibanez V, Pascual-Leone A, Zhuang P, Hallett M (1998) Dynamic cortical involvement in implicit and explicit motor sequence learning. A pet study. Brain 121(Pt 11):2159–2173

    Article  PubMed  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790

    PubMed  CAS  Google Scholar 

  • Keele SW, Ivry R, Mayr U, Hazeltine E, Heuer H (2003) The cognitive and neural architecture of sequence representation. Psychol Rev 110(2):316–339

    Article  PubMed  Google Scholar 

  • Kennerley SW, Sakai K, Rushworth MF (2004) Organization of action sequences and the role of the pre-sma. J Neurophysiol 91(2):978–993

    Article  PubMed  Google Scholar 

  • Koch I, Hoffmann J (2000a) Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychol Res 63(1):22–35

    Article  CAS  Google Scholar 

  • Koch I, Hoffmann J (2000b) The role of stimulus-based and response-based spatial information in sequence learning. J Exp Psychol Learn Mem Cogn 26(4):863–882

    Article  CAS  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  PubMed  CAS  Google Scholar 

  • Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cogn Psychol 19(1):1–32

    Article  Google Scholar 

  • Pascual-Leone A, Wassermann EM, Grafman J, Hallett M (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 107(3):479–485

    Article  PubMed  CAS  Google Scholar 

  • Reed J, Johnson P (1994) Assessing implicit learning with indirect tests: determining what is learned about sequence structure. J Exp Psychol Learn Mem Cogn 20:585–594

    Article  Google Scholar 

  • Restle F (1970) Theory of serial pattern learning: structural trees. Psychol Rev 77(6):481–495

    Article  Google Scholar 

  • Robertson EM, Tormos JM, Maeda F, Pascual-Leone A (2001) The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb Cortex 11(7):628–635

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Kitaguchi K, Hikosaka O (2003) Chunking during human visuomotor sequence learning. Exp Brain Res 152(2):229–242

    Article  PubMed  Google Scholar 

  • Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114(Pt 2):727–741

    PubMed  Google Scholar 

  • Stuss DT, Alexander MP, Hamer L, Palumbo C, Dempster R, Binns M, et al (1998) The effects of focal anterior and posterior brain lesions on verbal fluency. J Int Neuropsychol Soc 4(3):265–278

    PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iring Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, I., Reverberi, C. & Rumiati, R.I. Learning hierarchically structured action sequences is unaffected by prefrontal-cortex lesion. Exp Brain Res 175, 667–675 (2006). https://doi.org/10.1007/s00221-006-0584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0584-6

Keywords

Navigation