Skip to main content
Log in

Bimanual adaptation: internal representations of bimanual rhythmic movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

From tying your shoes and clipping your tie to the claps at the end of a fine seminar, bimanual coordination plays a major role in our daily activities. An important phenomenon in bimanual coordination is the predisposition toward mirror symmetry in the performance of bimanual rhythmic movements. Although learning and adaptation in bimanual coordination are phenomena that have been observed, they have not been studied in the context of adaptive control and internal representations—approaches that were successfully employed in the arena of reaching movements and adaptation to force perturbations. In this paper we examine the dynamics of the learning mechanisms involved when subjects are trained to perform a bimanual non-harmonic polyrhythm in a bimanual index finger tapping task. Subjects are trained in this task implicitly, using altered visual feedback, while their performance is continuously monitored throughout the experiment. Our experimental results indicate the existence of significant (p<<0.01) learning curves (i.e., error plots with significantly negative slopes) during training and aftereffects with a washout period after the visual feedback ceases to be altered. These results confirm the formation of internal representations in bimanual motor control. We present a simple, physiologically plausible, neural model that combines feedback and adaptation in the control process and which is able to reproduce key phenomena of bimanual coordination and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model. Brain Cogn 48:149–165

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational Nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Cardoso de Oliveira S (2002) The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychol 110:139–159

    Article  Google Scholar 

  • Cattaert D, Semjen A, Summers JJ (1999) Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    Article  PubMed  CAS  Google Scholar 

  • Cohen L (1971) Synchronous bimanual movements performed by homologous and non-homologous muscles. Percept Mot Skills 32:639–644

    PubMed  CAS  Google Scholar 

  • Dale HH (1935) Pharmacology and nerve endings. Proceedings of the royal society of medicine 28:319–332

    CAS  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776

    Article  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia 42(7):855–867

    Article  PubMed  CAS  Google Scholar 

  • Deutsch D (1983) The Generation of two Isochronous Sequences in Parallel. Percept Psychophys 34:331–337

    PubMed  CAS  Google Scholar 

  • Franz E, Ramachandran VS (1998) Bimanual coupling in amputees with phantom limbs. Nat Neurosci 1:443–444

    Article  PubMed  CAS  Google Scholar 

  • Fuchs A, Jirsa VK, Haken H, Kelso JA (1996) Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biol Cybern 74:21–30

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S (1982) Studies of mind and brain. Reidel Press, Boston

    Google Scholar 

  • Grossberg S, Pribe C, Cohen M (1997) Neural control of interlimb oscillations.1. Human bimanual coordination. Biol Cybern 77:131–140

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Kelso J, Bunz H (1985) A theoretical-model of phase-transitions in human hand movements. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Howard I, Kording K, Ingram J, Wolpert D (2004) Statistics of Natural Arm Movements. In: Neural control of movement society meeting, Sitges, Spain

  • Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science. Elsevier Science Publishing, NY

    Google Scholar 

  • Karniel A, Inbar GF (2000) Human motor control: Learning to control a time-varying, nonlinear, many-to-one system. IEEE Trans Syst Man Cybern C Appl Rev 30:1–11

    Article  Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2002) Does the motor control system use multiple models and context switching to cope with a variable environment? Exp Brain Res 143:520–524

    Article  PubMed  CAS  Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2003) Sequence, time, or state representation: how does the motor control system adapt to variable environments? Biol Cybern 89:10–21

    PubMed  Google Scholar 

  • Karniel A, Meir R, Inbar GF (2001) Polyhedral mixture of linear experts for many-to-one mapping inversion and multiple controllers. Neurocomputing 37:31–49

    Article  Google Scholar 

  • Karniel A, Klaiman E, Yosef V (2003) Feedback versus adaptation in the motor control system: does the brain use internal models for bimanual coordination and timing? In: Society for neuroscience, Abstract: Program No. 271.5

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    Article  PubMed  CAS  Google Scholar 

  • Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5:229–238

    Article  PubMed  CAS  Google Scholar 

  • Klaiman E, Karniel A (2004) A neural control model for bimanual rhythmic movements. In: IEEEI 2004, Tel-Aviv, Israel

  • Klaiman E, Karniel A (2004) Unraveling features of the neural control system that generates periodic bimanual coordination. In: Neural Control of Movement meeting, Sitges, Spain

  • Klapp S, Nelson J, Jagacinski R (1998) Can people tap concurrent bimanual rhythms independently? J Mot Behav 30:301–322

    Article  CAS  PubMed  Google Scholar 

  • Kuffler S (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectories. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lee TD, Swinnen SP, Verschueren S (1995) Relative phase alterations during bimanual skill acquisition. J Mot Behav 27:263–274

    PubMed  Google Scholar 

  • Marteniuk RG, MacKenzie CL, Baba DM (1984) Bimanual movement control: information processing and interaction effects. QJ Exp Psychol A36:335–365

    Google Scholar 

  • Masuda N, Aihara K (2001) Synchronization of pulse-coupled excitable neurons. Phys Rev E Stat Nonlin Soft Matter Phys 64:051906

    PubMed  CAS  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA (1999) Modular features of motor control and learning. Curr Opin Neurobiol 9:713–717

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (1993) Common principles of motor control. In: Vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

  • Peper CL, Ridderikhoff A, Daffertshofer A, Beek PJ (2004) Explanatory limitations of the HKB model: Incentives for a two-tiered model of rhythmic interlimb coordination. Hum Mov Sci 23:673–697

    Article  PubMed  Google Scholar 

  • Schmidt RA, Lee TD (1999) Motor control and learning: a behavioral emphasis, 3rd edn. Human Kinetics, Champaign, IL

    Google Scholar 

  • Schoner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. science 239:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Sternad D, Turvey MT, Saltzman EL (1999) Dynamics of 1: 2 coordination: Generalizing relative phase to n: m rhythms. J Mot Behav 31:207–223

    PubMed  Google Scholar 

  • Summers JJ, Rosenbaum DA, Burns BD, Ford SK (1993) Production of polyrhythms. J Exp Psychol Hum Percept Perform 19:416–428

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: From behavioural principles to neural-network interactions. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Walter CB, Serrien DJ (1997) Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. J Exp Psychol Hum Percept Perform 1087–1110

  • Swinnen SP, Lee TD, Verschueren S, Serrien D, Bogaerds H (1997) Interlimb coordination: Learning and transfer under different feedback conditions. Hum Mov Sci 749–785

  • Swinnen SP, Puttemans V, Vangheluwe S, Wenderoth N, Levin O, Dounskaia N (2003) Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behav Brain Res 139:177–195

    Article  PubMed  Google Scholar 

  • Swinnen SP, Walter CB, Lee TD, Serrien DJ (1993) Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling. J Exp Psychol Learn Mem Cogn 19:1328–1344

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Swinnen SP, Young DE, Walter CB, Serrien DJ (1991) Control of bilateral asymmetrical movements. Exp Brain Res 85:163–173

    Article  PubMed  CAS  Google Scholar 

  • Temprado J, Monno A, Zanone P, Kelso J (2002) Attentional demands reflect learning-induced alterations of bimanual coordination dynamics. Eur J Neurosci 16:1390–1394

    Article  PubMed  CAS  Google Scholar 

  • Treffner PJ, Turvey MT (1993) Resonance constraints on rhythmic movement. J Exp Psychol Hum Percept Perform 19:1221–1237

    Article  Google Scholar 

  • Treffner PJ, Turvey MT (1995) Handedness and the asymmetric dynamics of bimanual rhythmic coordination. J Exp Psychol Hum Percept Perform 318–333

  • Von Bekesy G (1968) Mach and Herring type lateral inhibition in vision. Vision Res 8:1483–1499

    Article  Google Scholar 

  • Weigelt C, Cardoso de Oliveira S (2003) Visuomotor transformations affect bimanual coupling. Exp Brain Res 148:439–450

    PubMed  Google Scholar 

  • Witney AG (2004) Internal models for bi-manual tasks. Hum Mov Sci 747–770

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Russell DM, Sternad D (2003) Task-effector asymmetries in a rhythmic continuation task. J Exp Psychol Hum Percept Perform 29:616–630

    Article  PubMed  Google Scholar 

  • Zanone P, Kelso J (1992) Evolution of behavioral attractors with learning—nonequilibrium phase-transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Karniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaiman, E., Karniel, A. Bimanual adaptation: internal representations of bimanual rhythmic movements. Exp Brain Res 171, 204–214 (2006). https://doi.org/10.1007/s00221-005-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0263-z

Keywords

Navigation