Skip to main content
Log in

The \({\mathbb{Z}_2}\)-Orbifold of the \({\mathcal{W}_3}\)-Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Zamolodchikov \({\mathcal{W}_3}\)-algebra \({\mathcal{W}^c_3}\) with central charge c has full automorphism group \({\mathbb{Z}_2}\). It was conjectured in the physics literature over 20 years ago that the orbifold \({(\mathcal{W}^c_3)^{\mathbb{Z}_2}}\) is of type \({\mathcal{W}(2,6,8,10,12)}\) for generic values of c. We prove this conjecture for all \({c \neq \frac{559 \pm 7 \sqrt{76657}}{95}}\), and we show that for these two values, the orbifold is of type \({\mathcal{W}(2,6,8,10,12,14)}\). This paper is part of a larger program of studying orbifolds and cosets of vertex algebras that depend continuously on a parameter. Minimal strong generating sets for orbifolds and cosets are often easy to find for generic values of the parameter, but determining which values are generic is a difficult problem. In the example of \({(\mathcal{W}^c_3)^{\mathbb{Z}_2}}\), we solve this problem using tools from algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa T.: Rationality of \({\mathcal{W}}\)-algebras: principal nilpotent cases. Ann. Math. 182(2), 565–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arakawa, T., Creutzig, T., Linshaw, A.: Cosets of Bershadsky–Polyakov algebras and rational \({\mathcal{W}}\)-algebras of type A. arXiv:1511.09143

  3. Arakawa, T., Creutzig, T., Kawasetsu, K., Linshaw, A.: Orbifolds and cosets of minimal \({\mathcal{W}}\)-algebras. arXiv:1610.09348

  4. Blumenhagen R., Eholzer W., Honecker A., Hornfeck K., Hubel R.: Coset realizations of unifying \({\mathcal{W}}\)-algebras. Int. J. Mod. Phys. Lett. A 10, 2367–2430 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Borcherds R.: Vertex operator algebras, Kac–Moody algebras and the monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  ADS  MATH  Google Scholar 

  6. Bouwknegt P., Schoutens K.: \({\mathcal{W}}\)-symmetry in conformal field theory. Phys. Rep. 223, 183–276 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carnahan, S., Miyamoto, M.: Rationality of fixed-point vertex operator algebras. arXiv:1603.05645

  8. Creutzig, T., Linshaw, A.: Cosets of affine vertex algebras inside larger structures. arXiv:1407.8512v3

  9. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–526 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dixon L., Harvey J., Vafa C., Witten E.: Strings on orbifolds. Nucl. Phys. B 261, 678–686 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dong C., Mason G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong C., Li H., Mason G.: Compact automorphism groups of vertex operator algebras. Int. Math. Res. Not. 18, 913–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong C., Li H., Mason G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, C., Ren, L., Xu, F.: On orbifold theory. arXiv:1507.03306

  15. Frenkel E., Ben-Zvi D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  16. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic Press, New York (1988)

    MATH  Google Scholar 

  17. Frenkel I.B., Zhu Y.C.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac V.: Vertex Algebras for Beginners, University Lecture Series, vol. 10. American Mathematical Society, Providence (1998)

    Google Scholar 

  19. Li H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109(2), 143–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6, 61–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lian B., Zuckerman G.: Commutative quantum operator algebras. J. Pure Appl. Algebra 100(1–3), 117–139 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lian B., Linshaw A.: Howe pairs in the theory of vertex algebras. J. Algebra 317, 111–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Linshaw A.: Invariant subalgebras of affine vertex algebras. Adv. Math. 234, 61–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miyamoto, M.: C 2-cofiniteness of cyclic orbifold models. Commun. Math. Phys. 335, 1279–1286 (2015)

  25. Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory (Russian). Teoret. Mat. Fiz. 65, 347–359 (1985) [English translation, Theoret. Math. Phys. 65, 1205–1213 (1985)]

  26. Zhu Y.: Modular invariants of characters of vertex operators. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Linshaw.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ali, M., Linshaw, A.R. The \({\mathbb{Z}_2}\)-Orbifold of the \({\mathcal{W}_3}\)-Algebra. Commun. Math. Phys. 353, 1129–1150 (2017). https://doi.org/10.1007/s00220-016-2812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2812-7

Navigation