Skip to main content
Log in

Gauge-Invariant Quasi-Free States on the Algebra of the Anyon Commutation Relations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({X=\mathbb{R}^2}\) and let \({q\in\mathbb{C}}\), \({|q|=1}\). For \({x=(x^1,x^2)}\) and \({y=(y^1,y^2)}\) from \({X^2}\), we define a function \({Q(x,y)}\) to be equal to q if \({x^{1} < y^{1}}\), to \({\bar q}\) if \({x^{1} > y^{1}}\), and to \({\mathfrak{R}q}\) if \({x^1=y^1}\). Let \({\partial_x^+}\), \({\partial_x^-}\) (\({x\in X}\)) be operator-valued distributions such that \({\partial_x^+}\) is the adjoint of \({\partial_x^-}\). We say that \({\partial_x^+}\), \({\partial_x^-}\) satisfy the anyon commutation relations (ACR) if \({\partial^+_x\partial_y^+=Q(y,x)\partial_y^+\partial_x^+}\) for \({x\ne y}\) and \({\partial^-_x\partial_y^+=\delta(x-y)+Q(x,y)\partial_y^+\partial^-_x}\) for \({(x,y)\in X^2}\). In particular, for q = 1, the ACR become the canonical commutation relations and for q = −1, the ACR become the canonical anticommutation relations. We define the ACR algebra as the algebra generated by operator-valued integrals of \({\partial_x^+}\), \({\partial_x^-}\). We construct a class of gauge-invariant quasi-free states on the ACR algebra. Each state from this class is completely determined by a positive self-adjoint operator T on the real space L 2(X, dx), which commutes with any operator of multiplication by a bounded function \({\psi(x^1)}\). In the case \({\mathfrak{R}q < 0}\), the operator T additionally satisfies \({0\le T\le -1/\Re q}\). Further, for \({T=\kappa^2\mathbf{1}}\) (\({\kappa > 0}\)), we discuss the corresponding particle density \({\rho(x):=\partial_x^+\partial_x^-}\). For \({\Re q\in(0,1]}\), using a renormalization, we rigorously define a vacuum state on the commutative algebra generated by operator-valued integrals of \({\rho(x)}\). This state is given by a negative binomial point process. A scaling limit of these states as \({\kappa\to\infty}\) gives the gamma random measure, depending on parameter \({\mathfrak{R}q}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L., Franz U., Skeide M.: Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras. Commun. Math. Phys. 228, 123–150 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Accardi, L., Lu, Y.G., Volovich, I.V.: White noise approach to classical and quantum stochastic calculi. Centro Vito Volterra, sUniversita di Roma Tor Vergata, Preprint 275 (1999)

  3. Araki H., Woods E.: Representations of the C.C.R. for a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  Google Scholar 

  4. Araki H., Wyss W.: Representations of canonical anticommutation relation. Helv. Phys. Acta 37, 136–159 (1964)

    MathSciNet  MATH  Google Scholar 

  5. Berezansky Yu.M., Lytvynov E., Mierzejewski D.A.: The Jacobi field of a Lévy process. Ukrain. Math. J. 55, 853–858 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezin, F.A.: The method of second quantization (in Russian). Nauka, Moscow (1965) [English translation: Academic Press, New York (1966)]

  7. Berezin F.A.: Some remarks on the representations of commutation relations (in Russian). Uspehi Mat. Nauk. 24(4), 65–88 (1969)

    MathSciNet  MATH  Google Scholar 

  8. Bożejko M., Speicher R.: Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300, 97–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bożejko M., Lytvynov E., Rodionova I.: An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions. Russ. Math. Surv. 70, 857–899 (2015)

    Article  MATH  Google Scholar 

  10. Bożejko M., Lytvynov E., Wysoczański J.: Noncommutative Lévy processes for generalized (particularly anyon) statistics. Commun. Math. Phys. 313, 535–569 (2012)

    Article  ADS  MATH  Google Scholar 

  11. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum-Statistical Mechanics. II. Equilibrium States. Models in Quantum-Statistical Mechanics. Springer, New York (1981)

  12. Chihara T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  13. Daletskii A., Kalyuzhnyi A.: \({L^2}\) dimensions of spaces of braid-invariant harmonic forms. J. Geom. Phys. 62, 1309–1322 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dell’Antonio G.F.: Structure of the algebra of some free systems. Commun. Math. Phys. 9, 81–117 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dell’Antonio G., Figari R., Teta A.: Statistics in space dimension two. Lett. Math. Phys. 40, 235–256 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dereziński J., Gérard C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  17. Frappat L., Sciarrino A., Sciuto S., Sorba P.: Anyonic realizations of the quantum affine Lie ailgebra \({U_q(\widehat A_{N-1})}\). Phys. Lett. B 369, 313–324 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gel’fand, I.M., Graev, M.I., Vershik, A.M.: Models of representations of current groups. Representations of Lie groups and Lie algebras (Budapest, 1971), pp. 121–179. Akad. Kiadó, Budapest (1985)

  19. Goldin G.A., Majid S.: On the Fock space for nonrelativistic anyon fields and braided tensor products. J. Math. Phys. 45, 3770–3787 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Goldin G.A., Menikoff R., Sharp D.H.: Particle statistics from induced representations of a local current group. J. Math. Phys. 21, 650–664 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Goldin G.A., Menikoff R., Sharp D.H.: Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect. J. Math. Phys. 22, 1664–1668 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. Goldin G.A., Sharp D.H.: Diffeomorphism groups, anyon fields, and q commutators. Phys. Rev. Lett. 76, 1183–1187 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hagedorn D., Kondratiev Y., Pasurek T., Röckner M.: Gibbs states over the cone of discrete measures. J. Funct. Anal. 264, 2550–2583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hiai, F.: q-deformed Araki–Woods algebras. Operator algebras and mathematical physics (Constanta, 2001), pp. 169–202, Theta, Bucharest (2003)

  25. Ivanov V.K.: The algebra of elementary generalized functions. Dokl. Akad. Nauk SSSR 246, 805–808 (1979) [English transl.: Soviet Math. Dokl. 20, 553–556 (1979)]

  26. Kallenberg O.: Random measures, 3rd edn. Akad.-Verl., Berlin (1983)

    MATH  Google Scholar 

  27. Kingman J.F.C.: Completely random measures. Pac. J. Math. 21, 59–78 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kingman, J.F.C.: Poisson processes. Oxford Studies in Probability, vol. 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993)

  29. Kondratiev, Y.G., da Silva, J.L., Streit, L., Us, G.F.: Analysis on Poisson and gamma spaces. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 1, 91–117 (1998)

  30. Kondratiev Y.G., Lytvynov E.W.: Operators of gamma white noise calculus. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 3, 303–335 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Kondratiev Y., Lytvynov E., Vershik A.: Laplace operators on the cone of Radon measures. J. Funct. Anal. 269, 2947–2976 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leinass J.M., Myrheim J.: On the theory of identical particles. Nuovo Cimento 37B, 1–23 (1977)

    Article  ADS  Google Scholar 

  33. Lerda A., Sciuto S.: Anyons and quantum groups. Nuclear Phys. B 401, 613–643 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liguori A., Mintchev M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Liguori A., Mintchev M.: Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169, 635–652 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liguori A., Mintchev M.: Quantum field theory, bosonization and duality on the half line. Nuclear Phys. B 522, 345–372 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Liguori A., Mintchev M., Pilo L.: Bosonization at finite temperature and anyon condensation. Nuclear Phys. B 569, 577–605 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Liguori A., Mintchev M., Rossi M.: Anyon quantum fields without a Chern–Simons term. Phys. Lett. B 305, 52–58 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  39. Liguori A., Mintchev M., Rossi M.: Unitary group representations in Fock spaces with generalized exchange properties. Lett. Math. Phys. 35, 163–177 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Liguori A., Mintchev M., Rossi M.: Representations of \({\mathcal{U}_q(\hat A_N)}\) in the space of continuous anyons. J. Phys. A 29, L493–L498 (1996)

    Article  ADS  Google Scholar 

  41. Liguori A., Mintchev M., Rossi M.: Fock representations of exchange algebras with involution. J. Math. Phys. 38, 2888–2898 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lytvynov E.: Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density. Rev. Math. Phys. 14, 1073–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lytvynov E.: Polynomials of Meixner’s type in infinite dimensionsJacobi fields and orthogonality measures. J. Funct. Anal. 200, 118–149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lytvynov E., Mei L.: On the correlation measure of a family of commuting Hermitian operators with applications to particle densities of the quasi-free representations of the CAR and CCR. J. Funct. Anal. 245, 62–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shlyakhtenko D.: Free quasi-free states. Pac. J. Math. 177, 329–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stern A.: Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Tsilevich N., Vershik A., Yor M.: An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process. J. Funct. Anal. 185, 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vershik, A.M., Gel’fand, I.M., Graev, M.I.: Representation of SL(2, R), where R is a ring of functions. Russ. Math. Surv. 28, 83–128 (1973) [English translation in “Representation Theory,” London Math. Soc. Lecture Note Ser., vol. 69, pp. 15–60. Cambridge Univ. Press, Cambridge (1982)]

  49. Vershik, A.M., Gel’fand, I.M., Graev, M.I.: Commutative model of the representation of the group of flows \({SL(2,\mathbf{R})^{X}}\) connected with a unipotent subgroup. Funct. Anal. Appl. 17, 80–82 (1983)

  50. Wilczek F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wilczek F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1145 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Lytvynov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytvynov, E. Gauge-Invariant Quasi-Free States on the Algebra of the Anyon Commutation Relations. Commun. Math. Phys. 351, 653–687 (2017). https://doi.org/10.1007/s00220-016-2786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2786-5

Navigation