Skip to main content
Log in

Planar Para Algebras, Reflection Positivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define a planar para algebra, which arises naturally from combining planar algebras with the idea of \({\mathbb{Z}_{N}}\) para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each \({\mathbb{Z}_{N}}\), we construct a family of subfactor planar para algebras that play the role of Temperley–Lieb–Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita–Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F.: Topological quantum field theory. Publ. Math. l’IHÉS 68, 175–186 (1988)

    Article  MATH  Google Scholar 

  2. Au-Yang, H., Perk, J.: About 30 years of integrable chiral potts model, quantum groups at roots of unity, and cyclic hypergeometric functions. Proc. Centre Math. Appl. (2016). arXiv:1601.01014

  3. Böckenhauer J., Evans D.E.: Modular invariants, graphs and \({\alpha}\)-induction for nets of subfactors I. Commun. Math. Phys. 197(2), 361–386 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 29–82 (2012)

  5. Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. AMS 313(1), 249–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cobanera E., Ortiz G.: Fock parafermions and self-dual representations of the braid group. Phys. Rev. A 89, 012328 (2014)

    Article  ADS  Google Scholar 

  7. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 581–642 (2005)

  8. Fateev V.A., Zamolodchikov A.B.: Self-dual solutions of the star-triangle relations in zn-models. Phys. Lett. A 92(1), 37–39 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. Goldschmidt D.M., Jones V.F.R.: Metaplectic link invariants. Geom. Dedic. 31(2), 165–191 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaffe A., Janssens B.: Characterization of reflection positivity: majoranas and spins. Commun. Math. Phys. 346(3), 1021–1050 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jaffe, A., Janssens, B.: Reflection positive doubles. J. Funct. Anal. (to appear) (2016). arXiv:1607.07126. doi:10.1016/j.jfa.2016.11.014

  12. Jaffe, A., Liu, Z.,Wozniakowski, A.: Topological design of protocol (2016). arXiv:1611.06447

  13. Jaffe, A., Liu, Z., Wozniakowski, A.: Holographic software for quantum networks (2016). arXiv:1605.00127

  14. Jiang C., Liu Z., Wu J.: Noncommutative uncertainty principles. J. Funct. Anal. 270, 264–311 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jones, V.F.R.: A Polynomial Invariant for Knots Via von Neumann Algebras. Mathematical Sciences Research Institute (1985)

  17. Jones V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125(3), 459–467 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jones V.F.R.: Baxterization. Int. J. Mod. Phys. A 6(12), 2035–2043 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jones, V.F.R.: Planar algebras, I. N. Z. J. Math. (1998). arXiv:math/9909027

  20. Jones V.F.R.: Quadratic tangles in planar algebras. Duke Math J. 161(12), 2257–2295 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaffe A., Pedrocchi F.L.: Reflection positivity for majoranas. Ann. Henri Poincaré 16, 189–203 (Springer) (2015)

  22. Jaffe A., Pedrocchi F.L.: Reflection positivity for parafermions. Commun Math. Phys. 337, 455–472 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kauffman L.H.: An invariant of regular isotopy. Trans AMS. 318, 417–471 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Z.: Exchange relation planar algebras of small rank. Trans. AMS 368, 8303–8348 (2016)

  25. Liu, Z.: Yang–Baxter relation planar algebras. arXiv:1507.06030

  26. Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7(04), 567–597 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morrison S., Peters E., Snyder N.: Skein theory for the \({{D}_{2n}}\) planar algebras. J. Pure Appl. Algebra 214, 117–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murakami J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, vol. 2. London Mathematical Society. Lecture Note Series, vol. 136. Cambridge University Press, Cambridge, pp. 119–172 (1988)

  30. Ocneanu A.: The classification of subgroups of quantum SU(N). Contemp. Math. 294, 133–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun Math. Phys. 31(2), 83–112 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman–Kac formula for boson–fermion models. Helv. Phys. Acta 46, 277–302 (1973)

    MathSciNet  Google Scholar 

  33. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popa S.: Classification of subfactors: reduction to commuting squares. Invent. Math. 101, 19–43 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Popa S.: Classification of amenable subfactors of type II. Acta Math. 172, 352–445 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wenzl H.: On sequences of projections. C.R. Math. Rep. Acad. Sci. Can. 9(1), 5–9 (1987)

    MathSciNet  MATH  Google Scholar 

  37. Witten E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192(2), 349–403 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Jaffe.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffe, A., Liu, Z. Planar Para Algebras, Reflection Positivity. Commun. Math. Phys. 352, 95–133 (2017). https://doi.org/10.1007/s00220-016-2779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2779-4

Navigation