Skip to main content
Log in

An Analysis of the Stationary Operation of Atomic Clocks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop an abstract model of atomic clocks that fully describes the dynamics of repeated synchronization between a classical oscillator and a quantum reference. We prove existence of a stationary state of the model and study its dependence on the control scheme, the interrogation time and the stability of the oscillator. For unbiased atomic clocks, we derive a fundamental bound on atomic clocks long time stability for a given local oscillator noise. In particular, we show that for a local oscillator noise with integrated frequency variance scaling as \({T^\alpha}\) for short times T, the optimal clock time variance scales as \({F^{-(\alpha +1)/(\alpha +2)}}\) with respect to the quantum Fisher information, F, associated to the quantum reference. In an attempt to prove the bounds without the unbiasedness assumption, we derive a new Cramer-Rao type inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Masoudi A., Dörscher S., Häfner S., Sterr U., Lisdat C.: Noise and instability of an optical lattice clock. Phys. Rec. A. 92, 063814 (2015)

    Article  ADS  Google Scholar 

  2. André A., Sørensen A.S., Lukin M.D.: Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92(23), 230801 (2004)

    Article  ADS  Google Scholar 

  3. Audoin C., Guinot B.: The Measurement of Time: Time, Frequency and the Atomic Clock. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  4. Berger J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  5. Berry D.W., Hall M.J.W., Wiseman H.M.: Stochastic heisenberg limit: Optimal estimation of a fluctuating phase. Phys. Rev. Lett. 111(11), 113601 (2013)

    Article  ADS  Google Scholar 

  6. Berry D.W., Tsang M., Hall M.J.W., Wiseman H.M.: The quantum bell-ziv-zakai bounds and heisenberg limits for waveform estimation. Phys. Rev. X. 5, 031018 (2015)

    Google Scholar 

  7. Bollinger J.J., Itano W.M., Wineland D.J., Heinzen D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A. 54(6), 4649–4652 (1996)

    Article  ADS  Google Scholar 

  8. Borregaard J., Sørensen A.S.: Efficient atomic clocks operated with several atomic ensembles. Phys. Rev Lett. 111, 090802 (2013)

    Article  ADS  Google Scholar 

  9. Borregaard J., Sørensen A.S.: Near heisenberg limited atomic clocks in the presence of decoherence. Phys. Rev Lett. 111, 090801 (2013)

    Article  ADS  Google Scholar 

  10. Braunstein S.L., Caves C.M.: Statistical distance and the geometry of quantum states. Phys. Rev Lett. 72(22), 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bruneau, L., Joye, A., Merkli, M.: Repeated and Continuous Interactions in Open Quantum Systems. In: Annales Henri Poincare, vol. 10, pp. 1251–1284. Springer, New York (2010)

  12. Bužek V., Derka R., Massar S.: Optimal quantum clocks. Phys. Rev Lett. 82(10), 2207 (1999)

    Article  ADS  Google Scholar 

  13. Chou C.W., Hume D.B., Rosenband T., Wineland D.J.: Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  ADS  Google Scholar 

  14. Cox D.R., Miller H.D.: The Theory of Stochastic Processes, Vol. 134. Chapman & Hall/CRC, New York (1977)

    Google Scholar 

  15. Demkowicz-Dobrzański R.: Optimal phase estimation with arbitrary a priori knowledge. Phys. Rev. A. 83(6), 061802 (2011)

    Article  ADS  Google Scholar 

  16. Demkowicz-Dobrzański, R., Kołodyński, J., Guţă, M.: The elusive heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

  17. Deutsch R.: Estimation theory. Prentice-Hall, New York (1965)

    MATH  Google Scholar 

  18. Dick, G.J.: Local oscillator induced instabilities in trapped ion frequency standards. Technical Report, DTIC Document ADA502386 (1987)

  19. Dick, G.J., Prestage, J.D., Greenhall, C.A., Maleki, L.: Local oscillator induced degradation of medium-term stability in passive atomic frequency standards. Technical Report, DTIC Document ADA515721 (1990)

  20. Doob, J.L.: Stochastic Processes, Vol. 101. New York (1953)

  21. Escher B.M., Matos F.R.L., Davidovich L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7(5), 406–411 (2011)

    Article  Google Scholar 

  22. Gill, R.D., Guţă, M.: On Asymptotic Quantum Statistical Inference. In: Banerjee, M., Bunea, F., Huang, J., Koltchinskii, V., Maathuis M. H. (Eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes—A Festschrift in Honor of Jon A.Wellner. pp. 105–127 Institute of Mathematical Statistics, Ohio (2013)

  23. Gill, R.D., Levit, B.Y.: Applications of the van trees inequality: a bayesian cramér-rao bound. Bernoulli 1(1/2), 59–79 (1995)

  24. Giovannetti V., Lloyd S., Maccone L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Greenhall C.A.: A derivation of the long-term degradation of a pulsed atomic frequency standard from a control-loop model. Ultrason. Ferroelectr. Freq. Control IEEE Trans. 45(4), 895–898 (1998)

    Article  Google Scholar 

  26. Guţă, M., Jenčová, A.: Local asymptotic normality in quantum statistics. Commun. Math. Phys. 276(2), 341–379 (2007)

  27. Helstrom, C.W.: Quantum Detection and Estimation Theory. Mathematics in Science and Engineering Series. Academic Press, Cambridge (1976)

  28. Hinkley N., Sherman J.A., Phillips N.B., Schioppo M., Lemke N.D., Beloy K., Pizzocaro M., Oates C.W., Ludlow A.D.: An atomic clock with 1018 instability. Science 341(6151), 1215–1218 (2013)

    Article  ADS  Google Scholar 

  29. Holevo, A.S.: Statistical Structure of Quantum Theory. Lecture Notes in Physics Monographs. Springer, New York (2001)

  30. Huelga S.F., Macchiavello C., Pellizzari T., Ekert A.K., Plenio M.B., Cirac J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    Article  ADS  Google Scholar 

  31. Hume, D.B., Leibrandt, D.R.: Differential Clock Comparisons with Phase-Locked Local Oscillators. arXiv:1508.05129 (2015)

  32. Itano W.M., Bergquist J.C., Bollinger J.J., Gilligan J.M., Heinzen D.J., Moore F.L., Raizen M.G., Wineland D.J.: Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993)

    Article  ADS  Google Scholar 

  33. Kessler E.M., Kómár P., Bishof M., Jiang L., Sørensen A.S., Ye J., Lukin M.D.: Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014)

    Article  ADS  Google Scholar 

  34. Kleppner, D.: Time too good to be true. Phys. Today 59, 10 (2006)

  35. Kolodynski J., Demkowicz-Dobrzański R.: Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82(5), 53804 (2010)

    Article  ADS  Google Scholar 

  36. Ludlow A.D., Boyd M.M., Ye J., Peik E., Schmidt P.O.: Optical atomic clocks. Rev. Mod. Phys 87, 637 (2015)

    Article  ADS  Google Scholar 

  37. Macieszczak, K., Demkowicz-Dobrzański, R., Fraas, M.: Bayesian quantum frequency estimation in presence of collective dephasing. New J. Phys. 16(11), 113002 (2014)

  38. Mullan M., Knill E.: Improving quantum clocks via semidefinite programming. Quant. Inf. Comput. 12(7–8), 553–574 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Mullan M., Knill E.: Optimizing passive quantum clocks. Phys. Rev. A 90(4), 042310 (2014)

    Article  ADS  Google Scholar 

  40. Poincaré, H.: The Measure of Time. The Concepts of Space and Time, pp. 317–327 Springer, Netherlands (1976)

  41. Riehle F.: Frequency Standards. Wiley, Hoboken, NJ (2006)

    Google Scholar 

  42. Sastrawan, J., Jones, C., Akhalwaya, I., Uys, H., Biercuk, M.J.: Improving Frequency Standard Performance by Optimized Measurement Feedback. arXiv:1407.3902 (2014)

  43. Takamoto, M., Takano, T., Katori, H.: Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. Lett. 5, 288–292 (2011)

  44. Van Trees, H.L.: Detection, Estimation, and Modulation theory. Wiley (2004)

  45. Westergaard, P.G., Lodewyck, J., Lemonde, P.: Minimizing the Dick effect in an optical lattice clock. Ultrason. Ferroelectr. Freq. Control IEEE Trans 57(3), 623–628 (2010)

  46. Wigner, E.P.: Relativistic invariance and quantum phenomena. Rev. Modern Phys. 29(3), 255 (1957)

  47. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3) 259–328 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fraas.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraas, M. An Analysis of the Stationary Operation of Atomic Clocks. Commun. Math. Phys. 348, 363–393 (2016). https://doi.org/10.1007/s00220-016-2761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2761-1

Navigation