Skip to main content
Log in

On the Nodal Lines of Eisenstein Series on Schottky Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

On convex co-compact hyperbolic surfaces \({X=\Gamma \backslash \mathbb{H}^{2}}\), we investigate the behavior of nodal curves of real valued Eisenstein series \({F_\lambda(z,\xi)}\), where \({\lambda}\) is the spectral parameter, \({\xi}\) the direction at infinity. Eisenstein series are (non-\({L^2}\)) eigenfunctions of the Laplacian \({\Delta_X}\) satisfying \({\Delta_X F_\lambda=(\frac{1}{4}+\lambda^2)F_\lambda}\). As \({\lambda}\) goes to infinity (the high energy limit), we show that, for generic \({\xi}\), the number of intersections of nodal lines with any compact segment of geodesic grows like \({\lambda}\), up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borthwick D.: Spectral Theory of infinite-Area Hyperbolic Surfaces, Progress in Mathematics, vol. 256. Birkhäuser Boston Inc., Boston (2007)

    MATH  Google Scholar 

  2. Bourgain J., Rudnick Z.: Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal 22(4), 878–937 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowen R.: Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115. Academic Press, Inc., Orlando (1984) (including a chapter by Burton Randol, With an appendix by Jozef Dodziuk)

  5. Donnelly H., Fefferman C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dyatlov S., Zworski M.: Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity 26(1), 35–52 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ghosh A., Reznikov A., Sarnak P.: Nodal domains of maass forms 1. Geom. Funct. Anal 23, 1515–1568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guillarmou C., Naud F.: Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds. Am. J. Math. 136(2), 445–479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jenkinson O., Pollicott M.: Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets. Am. J. Math. 124(3), 495–545 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jung, J.: Quantitative quantum ergodicity and the nodal domains of Hecke–Maass cusp forms. Commun. Math. Phys. (2016). doi:10.1007/s00220-016-2694-8

  11. Jung J.: Sharp bounds for the intersection of nodal lines with certain curves. J. Eur. Math. Soc. (JEMS) 16(2), 273–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jung J., Zelditch S.: Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution. J. Differ. Geom. 102(1), 37–66 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Jung J., Zelditch S.: Number of nodal domains of eigenfunctions on non-positively curved surfaces with concave boundary. Math. Ann. 364(3–4), 813–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwaniec H., Sarnak P.: \({L^\infty}\) norms of eigenfunctions on arithmetic surfaces. Ann. Math. (2) 141, 301–320 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D., Phillips, R.S.: Translation representation for automorphic solutions of the non-Euclidean wave equation I, I, III. Commun. Pure. Appl. Math. 37, 38, 303–328, 779–813, 179–208 (1984) (1985)

  16. Mazzeo R.R., Melrose R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. McMullen C.T.: Hausdorff dimension and conformal dynamics. III. Computation of dimension. Am. J. Math. 120(4), 691–721 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Milnor J.: A note on curvature and fundamental group. J. Differ. Geom. 2, 1–7 (1968)

    MathSciNet  MATH  Google Scholar 

  19. Patterson S.J.: The limit set of a Fuchsian group. Acta Math. 136(3-4), 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Titchmarsh E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1932)

    MATH  Google Scholar 

  21. Toth J.A., Zelditch S.: Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct. Anal. 23(2), 715–775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zelditch S.: Complex zeros of real ergodic eigenfunctions. Invent. Math. 167(2), 419–443 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zelditch, S.: Eigenfunctions and nodal sets. In: Surveys in differential geometry. Geometry and topology, Surveys in Differential Geometry, vol. 18, pp. 237–308. International Press, Somerville (2013)

  24. Zelditch S.: Ergodicity and intersections of nodal sets and geodesics on real analytic surfaces. J. Differ. Geom. 96(2), 305–351 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Naud.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakobson, D., Naud, F. On the Nodal Lines of Eisenstein Series on Schottky Surfaces. Commun. Math. Phys. 351, 493–523 (2017). https://doi.org/10.1007/s00220-016-2747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2747-z

Navigation