Skip to main content
Log in

Codimension One Threshold Manifold for the Critical gKdV Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the “threshold manifold” near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59–140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C 1 manifold of codimension one separates solutions blowing up in finite time and solutions in the “exit regime”. On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, P.W., Jones, C.K.R.T.: Invariant Manifolds for Semilinear Partial Differential Equations. Dynamics Reported Series Dynamics Systems Applications, vol. 2, pp. 1–38. Wiley, Chichester (1989)

  2. Beceanu M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. 159, 417–477 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beceanu M.: A critical center-stable manifold for Schrödinger’s equation in three dimensions. Commun. Pure Appl. Math. 65, 431–507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Wang, W.: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 197–215 (1997)

  6. Duyckaerts T., Roudenko S.: Threshold solutions for the focusing 3D cubic Schrödinger equation. Rev. Mat. Iberoam. 26, 1–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kato, T.: On the Cauchy Problem for the (Generalized) Korteweg–de Vries Equation. Studies in Applied Mathematics, Advanced Mathematics Supplementary Studies, vo. 8, pp. 93–128. Academic Press, New York (1983)

  8. Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201, 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenig, C.E., Ponce, G., Vega, L.: On the concentration of blow up solutions for the generalized kdv equation critical in L 2. In: Nonlinear Wave Equations (Providence, RI, 1998), Contempoary Mathematics, vol. 263, pp. 131–156. American Mathematical Society, Providence (2000)

  12. Koch H., Marzuola J.L.: Small data scattering and soliton stability in \({\dot H^{-1/6}}\) for the quartic KdV equation. Anal. PDE 5, 145–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krieger J., Nakanishi K., Schlag W.: Threshold phenomenon for the quintic wave equation in three dimensions. Commun. Math. Phys. 327, 309–332 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. (2014). doi:10.1007/s00208-014-1059-x (online first)

  15. Krieger J., Schlag W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19, 815–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krieger J., Schlag W.: Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. (JEMS) 11, 1–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg–de Vries equation. J. Math. Pures Appl. 79, 339–425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martel Y., Merle F.: Instability of solitons for the critical generalized Korteweg–de Vries equation. Geom. Funct. Anal. 11, 74–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martel Y., Merle F.: Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation. Ann. Math. 155, 235–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martel Y., Merle F.: Blow up in finite time and dynamics of blow up solutions for the L 2-critical generalized KdV equation. J. Am. Math. Soc. 15, 617–664 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martel Y., Merle F., Raphaël P.: Blow up for the critical gKdV equation I: dynamics near the soliton. Acta Math. 212, 59–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation II: minimal mass solution. J. Math. Eur. Soc. 17, 1855–1925 (2015)

  23. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation III: exotic blow up rates. Annali della Scuola Normale Superiore de Pisa XIV, 575–631 (2015)

  24. Merle, F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Am. Math. Soc. 14, 555–578 (2001)

  25. Merle F., Raphaël P., Szeftel J.: The instability of Bourgain–Wang solutions for the L 2 critical NLS. Am. J. Math. 135, 967–1017 (2013)

    Article  MATH  Google Scholar 

  26. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich (2011)

  27. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250, 2299–2333 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differ. Equ. 44, 1–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schlag W.: Stable manifold for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169, 139–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Payne L.E., Sattinger D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22, 273–303 (1975)

    Article  MathSciNet  Google Scholar 

  31. Tao T.: Scattering for the quartic generalized Korteweg–de Vries equation. J. Differ. Equ. 232, 623–651 (2007)

    Article  ADS  MATH  Google Scholar 

  32. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Martel.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martel, Y., Merle, F., Nakanishi, K. et al. Codimension One Threshold Manifold for the Critical gKdV Equation. Commun. Math. Phys. 342, 1075–1106 (2016). https://doi.org/10.1007/s00220-015-2509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2509-3

Keywords

Navigation