Skip to main content
Log in

The Impact of the Domain Boundary on an Inhibitory System: Existence and Location of a Stationary Half Disc

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The nonlocal geometric variational problem derived from the Ohta–Kawasaki diblock copolymer theory is an inhibitory system with self-organizing properties. The free energy, defined on subsets of a prescribed measure in a domain, is a sum of a local perimeter functional and a nonlocal energy given by the Green’s function of Poisson’s equation on the domain with the Neumann boundary condition. The system has the property of preventing a disc from drifting towards the domain boundary. This raises the question of whether a stationary set may have its interface touch the domain boundary. It is proved that a small, perturbed half disc exists as a stable stationary set, where the circular part of its boundary is inside the domain, as the interface, and the almost flat part of its boundary coincides with part of the domain boundary. The location of the half disc depends on two quantities: the curvature of the domain boundary, and a remnant of the Green’s function after one removes the fundamental solution and a reflection of the fundamental solution. This reflection is defined with respect to any sufficiently smooth domain boundary. It is an interesting new concept that generalizes the familiar notions of mirror image and circle inversion. When the nonlocal energy is weighted less against the local energy, the stationary half disc sits near a maximum of the curvature; when the nonlocal energy is weighted more, the half disc appears near a minimum of the remnant function. There is also an intermediate case where the half disc is near a minimum of a combination of the curvature and the remnant function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Fusco N., Morini M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322(2), 515–557 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Alberti G., Choksi R., Otto F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22(2), 569–605 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates S.F., Fredrickson G.H.: Block copolymers—designer soft materials. Phys. Today 52(2), 32–38 (1999)

    Article  Google Scholar 

  4. Chen X., Kowalczyk M.: Existence of equilibria for the Cahn–Hilliard equation via local minimizers of the perimeter. Commun. Partial Differ. Equ. 21(7–8), 1207–1233 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Choksi R., Peletier M.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp inteface functional. SIAM J. Math. Anal. 42(3), 1334–1370 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choksi R., Sternberg P.: On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611(611), 75–108 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    Google Scholar 

  8. Gilbarg D., Trudinger S.N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  9. Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  10. Goldman D., Muratov C.B., Serfaty S.: The Gamma-limit of the two-dimensional Ohta–Kawasaki energy. I. Droplet density. Arch. Ration. Mech. Anal. 210(2), 581–613 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldman D., Muratov C.B., Serfaty S.: The Gamma-limit of the two-dimensional Ohta–Kawasaki energy. Drop arrangement via the renormalized energy. Arch. Ration. Mech. Anal. 212(2), 445–501 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kang X., Ren X.: Ring pattern solutions of a free boundary problem in diblock copolymer morphology. Phys. D 238(6), 645–665 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kang X., Ren X.: The pattern of multiple rings from morphogenesis in development. J. Nonlinear Sci. 20(6), 747–779 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Morini M., Sternberg P.: Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46(3), 2033–2051 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Muratov C.B.: Droplet phases in non-local Ginzburg–Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299(1), 45–87 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Ohta T., Kawasaki K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)

    Article  ADS  Google Scholar 

  17. Oshita Y.: Singular limit problem for some elliptic systems. SIAM J. Math. Anal. 38(6), 1886–1911 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ren X., Wei J.: On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31(4), 909–924 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ren X., Wei J.: Many droplet pattern in the cylindrical phase of diblock copolymer morphology. Rev. Math. Phys. 19(8), 879–921 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ren X., Wei J.: Single droplet pattern in the cylindrical phase of diblock copolymer morphology. J. Nonlinear Sci. 17(5), 471–503 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Ren X., Wei J.: Spherical solutions to a nonlocal free boundary problem from diblock copolymer morphology. SIAM J. Math. Anal. 39(5), 1497–1535 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ren X., Wei J.: Oval shaped droplet solutions in the saturation process of some pattern formation problems. SIAM J. Appl. Math. 70(4), 1120–1138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ren X., Wei J.: Asymmetric and symmetric double bubbles in a ternary inhibitory system. SIAM J. Math. Anal. 46(4), 2798–2852 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ren X., Wei J.: A double bubble assembly as a new phase of a ternary inhibitory system. Arch. Ration. Mech. Anal. 215(3), 967–1034 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simon L.: Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Australian National University, Canberra (1984)

    Google Scholar 

  26. Sternberg P., Topaloglu I.: On the global minimizers of a nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13(1), 155–169 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ren.

Additional information

Communicated by L. Caffarelli

X. Ren and D. Shoup are supported in part by NSF grant DMS-1311856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Shoup, D. The Impact of the Domain Boundary on an Inhibitory System: Existence and Location of a Stationary Half Disc. Commun. Math. Phys. 340, 355–412 (2015). https://doi.org/10.1007/s00220-015-2451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2451-4

Keywords

Navigation