Skip to main content
Log in

Effective Light Dynamics in Perturbed Photonic Crystals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, we rigorously derive effective dynamics for light from within a limited frequency range propagating in a photonic crystal that is modulated on the macroscopic level; the perturbation parameter \({\lambda \ll 1}\) quantifies the separation of spatial scales.We do that by rewriting the dynamical Maxwell equations as a Schrödinger-type equation and adapting space-adiabatic perturbation theory. Just like in the case of the Bloch electron, we obtain a simpler, effective Maxwell operator for states from within a relevant almost invariant subspace. A correct physical interpretation for the effective dynamics requires establishing two additional facts about the almost invariant subspace: (1) The source-free condition has to be verified and (2) it has to support real states. The second point also forces one to consider a multiband problem even in the simplest possible setting; This turns out to be a major difficulty for the extension of semiclassical methods to the domain of photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Palombaro M., Rauch J.: Diffraction of Bloch wave packets for Maxwell’s equations. Commun. Contemp. Math. 15, 1350040 (2013)

    Article  MathSciNet  Google Scholar 

  2. Altland A., Zirnbauer M.R.: Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997)

    Article  ADS  Google Scholar 

  3. Atiyah M.: K-theory. Westview Press, Boulder (1994)

    Google Scholar 

  4. Davies E.B.: The functional calculus. J. Lond. Math. Soc. 52, 166–176 (1995)

    Article  ADS  MATH  Google Scholar 

  5. De Nittis, G., Gomi, K.: Classification of “Quaternionic” Bloch-bundles: Topological Insulators of type AII. arXiv:1404.5804 (2014)

  6. De Nittis, G., Gomi, K.: Classification of “Real” Bloch-bundles: Topological Insulators of type AI. arXiv:1404.5804 (2014)

  7. De Nittis G., Lein M.: Applications of magneticΨ DO techniques to SAPT—beyond a simple review. Rev. Math. Phys. 23, 233–260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Nittis G., Lein M.: Exponentially localized Wannier functions in periodic zero flux magnetic fields. J. Math. Phys. 52, 112103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. De Nittis, G., Lein, M.: Ray Optics in Photonic Crystals. In preparation (2013)

  10. De Nittis G., Lein. M.: Topological polarization in graphene-like systems. J. Phys. A: Math. Theor. 46(38), 385001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. De Nittis, G., Lein M.: On the Role of Symmetries in Photonic Crystals. arxiv:1403.5984 (2014)

  12. De Nittis G., Lein M.: The perturbed Maxwell operator as pseudodifferential operator. Doc. Math. 19, 63–101 (2014)

    MATH  MathSciNet  Google Scholar 

  13. Dimassi, M., Sjöstrand, J.: Spectral Asymtptotics in the Semi-Classical Limit, volume 268 of Lecture Notes Series. London Mathematical Society (1999)

  14. Dündar M.A., Wang B., Nötzel R., Karouta F., van der Heijden R.W.: Optothermal tuning of liquid crystal infiltrated ingaasp photonic crystal nanocavities. J. Opt. Soc. Am. B 28(6), 1514–1517 (2011)

    Article  Google Scholar 

  15. Esposito L., Gerace D.: Topological aspects in the photonic crystal analog of single-particle transport in quantum Hall systems. Phys. Rev. A 88, 013853 (2013)

    Article  ADS  Google Scholar 

  16. Fürst M., Lein M.: Semi- and non-relativistic limit of the Dirac dynamics with external fields. Annales Henri Poincaré 14, 1305–1347 (2013)

    Article  ADS  MATH  Google Scholar 

  17. Gat O., Lein M., Teufel S.: Semiclassics for particles with spin via a Wigner-Weyl-type calculus. Annales Henri Poincaré (2014) (to appear)

  18. Grauert H.: Analytische Faserungen über holomorph–vollständigen Räumen. Math. Annalen 135, 263–273 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. He C., Lin L., Sun X.-C., Liu X.-P., Lu M.-H., Chen Y.-F.: Topological photonic states. Int. J. Modern Phys. B 28(2), 1441001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper, volume 345 of Lecture Notes in Physics, pp. 118–197. Springer, Berlin (1989)

  21. Jackson J.D.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  22. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D.: Photonic Crystals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  23. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conference Proceedings 1134(1), 22–30 (2009)

  24. Kuchment P.: Tight frames of exponentially decaying Wannier functions. J. Phys. A 42, 025203 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuiper N.H.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nenciu G.: Existence of the exponentially localised wannier functions. Commun. Math. Phys. 91, 81–85 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Ochiai T., Onoda M.: Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B 80, 155103 (2009)

    Article  ADS  Google Scholar 

  28. Onoda M., Murakami S., Nagaosa N.: Geometrical asepcts in optical wave-packet dynamics. Phys. Rev. E 74, 066610 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Panati G.: Triviality of Bloch and Bloch-Dirac bundles. Annales Henri Poincaré 8, 995–1011 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Panati G., Spohn H., Teufel S.: Effective dynamics for Bloch electrons: Peierls substitution. Commun. Math. Phys. 242, 547–578 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Panati G., Spohn H., Teufel S.: Space adiabatic perturbation theory. Adv. Theor. Math. Phys. 7(1), 145–204 (2003)

    Article  MathSciNet  Google Scholar 

  32. Panati G., Spohn H., Teufel S.: The time-dependent Born–Oppenheimer approximation. M2AN 41(2), 297–314 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Raghu S., Haldane F.D.M.: Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008)

    Article  ADS  Google Scholar 

  34. Reed M., Simon B.: Methods of Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  35. Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  36. Stiepan, H.-M., Teufel, S.: Semiclassical approximations for Hamiltonians with operator-valued symbols. Commun. Math. Phys. 320, 821–849 (2013)

  37. Tenuta, L., Teufel, S.: Effective dynamics for particles coupled to a quantized scalar field. Commun. Math. Phys. 280, 751–805 (2008)

  38. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics, volume 1821 of Lecture Notes in Mathematics. Springer, Berlin (2003)

  39. van Driel, H.M., Leonard, S.W., Tan, H.-W., Birner, A., Schilling, J., Schweizer, S.L., Wehrspohn, R.B., Gosele, U.: Tuning 2D photonic crystals. In: Fauchet P.M. Braun P.V. (eds.) Tuning the Optical Response of Photonic Bandgap Structures, volume 5511, pp. 1–9. SPIE, Bellingham, USA (2004)

  40. Và àrilly, J.C., Figueroa, H., Gracia-Bondìa, J.M.: Elements of Noncommutative Geometry. Birkhäuser, London (2001)

  41. Wong, C.W., Yang, X., Rakich, P.T., Johnson, S.G., Qi, M., Jeon, Y., Barbastathis, G., Kim, S.-G.: Strain-tunable photonic bandgap microcavity waveguides in silicon at 1.55 μm. In: Fauchet, P.M., Braun, P.V. (eds.) Tuning the Optical Response of Photonic Bandgap Structures, vol. 5511, pp. 156–164. SPIE, Bellingham, USA (2004)

  42. Wu Z., Levy M., Fratello V.J., Merzlikin A.M.: Gyrotropic photonic crystal waveguide switches. Appl. Phys. Lett. 96, 051125 (2010)

    Article  ADS  Google Scholar 

  43. Yeh K.C., Chao H.Y., Lin K.H.: A study of the generalized Faraday effect in several media. Radio Sci. 34(1), 139–153 (1999)

    Article  ADS  Google Scholar 

  44. Rill C., Rill M.S., Linden S., Wegener M.: Bianisotropic photonic metamaterials. IEEE J. Sel. Top. Quantum Electron. 16(2), 367–3375 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Lein.

Additional information

Communicated by H. Spohn

Dedicated to Herbert Spohn on the occasion of his (66 – ε)th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Nittis, G., Lein, M. Effective Light Dynamics in Perturbed Photonic Crystals. Commun. Math. Phys. 332, 221–260 (2014). https://doi.org/10.1007/s00220-014-2083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2083-0

Keywords

Navigation