Skip to main content
Log in

Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We identify the Givental formula for the ancestor formal Gromov–Witten potential with a version of the topological recursion procedure for a collection of isolated local germs of the spectral curve. As an application we prove a conjecture of Norbury and Scott on the reconstruction of the stationary sector of the Gromov–Witten potential of \({\mathbb{C}{\rm P}^1}\) via a particular spectral curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov A., Mironov A., Morozov A.: Solving Virasoro constraints in matrix models. Fortsch. Phys. 53, 512–521 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Alexandrov A., Mironov A., Morozov A.: M-theory of matrix models. Teor. Mat. Fiz. 150, 179–192 (2007)

    Article  Google Scholar 

  3. Alexandrov A., Mironov A., Morozov A.: Instantons and merons in matrix models. Physica D235, 126–167 (2007)

    ADS  MathSciNet  Google Scholar 

  4. Dubrovin, B.: Geometry of 2D topological field theories, integrable systems and quantum groups (Montecatini Terme, 1993). In: Lecture Notes in Math. Vol. 1620, Berlin: Springer, 1996, pp. 120–348

  5. Dubrovin, B.: Painleve’ transcendents and two-dimensional topological field theory. http://arxiv.org/abs/math/9803107v2 [math.AG], 1998

  6. Dubrovin, B., Zhang, Y.:Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. A new 2005 version of http://arxiv.org/abs/math/0108160v1 [math.DG], 2001

  7. Dumitrescu, O., Mulase, M., Safnuk, B., Sorkin, A.: The spectral curve of the Eynard–Orantin recursion via the Laplace transform. http://arxiv.org/abs/1202.1159v1 [math.AG], 2012

  8. Dunin-Barkowski P., Shadrin S., Spitz L.: Givental graphs and inversion symmetry. Lett. Math. Phys. 103, 533–557 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture. http://arxiv.org/abs/math/0612510v3 [math.AG], 2009

  10. Eynard, B.: Recursion between Mumford volumes of moduli spaces. http://arxiv.org/abs/0706.4403v1 [math.AG], 2007

  11. Eynard, B.: Intersection numbers of spectral curves. http://arxiv.org/abs/1104.0176v3 [math-ph], 2011

  12. Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. http://arxiv.org/abs/1110.2949v1[math-ph], 2011

  13. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. http://arxiv.org/abs/math-ph/0702045v4 [math-ph], 2007

  14. Eynard, B., Orantin, N.: Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models. http://arxiv.org/abs/0705.3600v1 [math-ph], 2007

  15. Eynard, B., Orantin, N.: Algebraic methods in random matrices and enumerative geometry. http://arxiv.org/abs/0811.3531v1 [math-ph], 2008

  16. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. http://arxiv.org/abs/1205.1103v2 [math-ph], 2013

  17. Givental A.: Semisimple Frobenius structures at higher genus. IMRN 23, 1265–1286 (2001)

    Article  MathSciNet  Google Scholar 

  18. Givental A.: Gromov–Witten invariants and quantization of quadratic hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Givental, A.: Symplectic geometry of Frobenius structures. In: “Frobenius manifolds”, Aspects Math. Vol. E36, Wiesbaden: Vieweg, 2004, pp. 91–112

  20. Kazarian, M.: Deformations of cohomological field theories. Preprint, 2007

  21. Kostov I., Orantin N.: CFT and topological recursion. JHEP 1011, 056 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lee, Y.-P.: Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations. http://arxiv.org/abs/math/0311100v2 [math.AG], 2007

  23. Lee Y.-P.: Invariance of tautological equations I: conjectures and applications. J. Eur. Math. Soc. (JEMS) 10(2), 399–413 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lee, Y.-P.: Invariance of tautological equations II: Gromov–Witten theory (with Appendix A by Y. Iwao, Y.-P. Lee). J. Am. Math. Soc. 22(2), 331–352 (2009)

  25. Lee, Y.-P.: Notes on axiomatic Gromov–Witten theory and applications. In: Algebraic geometry—(Seattle 2005), Part 1, Proc. Sympos. Pure Math. Vol. 80, Part 1, Providence, RI: Am. Math. Soc., 2009, pp. 309–323

  26. Norbury, P., Scott, N.: Gromov–Witten invariants of \({\mathbf{P}^1}\) and Eynard–Orantin invariants. http://arxiv.org/abs/1106.1337v2 [math.AG], 2011

  27. Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz numbers, and matrix models, I. http://arxiv.org/abs/math/0101147v2 [math.AG], 2001

  28. Orantin, N.: From matrix models’ topological expansion to topological string theories: counting surfaces with algebraic geometry, Ph.D. thesis Université Paris 6—Pierre et Marie Curie, in French, http://arxiv.org/abs/0709.2992v1 [hep-th], 2007

  29. Orantin, N.: Symplectic invariants, Virasoro constraints and Givental decomposition. http://arxiv.org/abs/0808.0635v2 [math-ph], 2008

  30. Shadrin S.: BCOV theory via Givental group action on cohomological fields theories. Mosc. Math. J. 9(2), 411–429 (2009)

    MATH  MathSciNet  Google Scholar 

  31. Song J.S., Song Y.S.: On a conjecture of Givental. J. Math. Phys. 45(12), 4539–4550 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Song J.S.: Descendant Gromov–Witten invariants, simple Hurwitz numbers, and the Virasoro conjecture for P 1. Adv. Theor. Math. Phys. 3(6), 1721–1768 (1999)

    MathSciNet  Google Scholar 

  33. Teleman C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Zhou, J.: Intersection numbers on Deligne–Mumford moduli spaces and quantum Airy curve. http://arxiv.org/abs/1206.5896v2 [math.AG], 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shadrin.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunin-Barkowski, P., Orantin, N., Shadrin, S. et al. Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure. Commun. Math. Phys. 328, 669–700 (2014). https://doi.org/10.1007/s00220-014-1887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1887-2

Keywords

Navigation