Skip to main content
Log in

Poisson Algebras of Block-Upper-Triangular Bilinear Forms and Braid Group Action

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study a quadratic Poisson algebra structure on the space of bilinear forms on \({\mathbb{C}^{N}}\) with the property that for any \({n, m \in \mathbb{N}}\) such that n mN, the restriction of the Poisson algebra to the space of bilinear forms with a block-upper-triangular matrix composed from blocks of size \({m \times m}\) is Poisson. We classify all central elements and characterise the Lie algebroid structure compatible with the Poisson algebra. We integrate this algebroid obtaining the corresponding groupoid of morphisms of block-upper-triangular bilinear forms. The groupoid elements automatically preserve the Poisson algebra. We then obtain the braid group action on the Poisson algebra as elementary generators within the groupoid. We discuss the affinisation and quantisation of this Poisson algebra, showing that in the case m = 1 the quantum affine algebra is the twisted q-Yangian for \({\mathfrak{o}_{n}}\) and for m = 2 is the twisted q-Yangian for \({(\mathfrak{sp}_{2n})}\). We describe the quantum braid group action in these two examples and conjecture the form of this action for any m > 2. Finally, we give an R-matrix interpretation of our results and discuss the relation with Poisson–Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondal A.: A symplectic groupoid of triangular bilinear forms and the braid groups. Izv. Math. 68, 659–708 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bondal A.: Symplectic groupoids related to Poisson–Lie groups. Tr. Mat. Inst. Steklova 246, 43–63 (2004)

    MathSciNet  Google Scholar 

  3. Cattaneo, A.S., Felder, G.: Poisson sigma models and symplectic groupoids. In: Quantization of singular symplectic quotients, Progr. Math. 198, Basel: Birkhäuser, 2001, pp. 61–93

  4. Chekhov L.O., Fock V.V.: Observables in 3d gravity and geodesic algebras. Czech. J. Phys. 50, 1201–1208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Chekhov L., Mazzocco M.: Isomonodromic deformations and twisted Yangians arising in Teichmüller theory. Adv. Math. 226(6), 4731–4775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chekhov, L., Mazzocco, M.: Work in progress 2013

  7. Crainic M., Fernandes R.: Integrability of Lie brackets. Ann. of Math. 157(2), 575–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crainic M., Fernandes R.: Integrability of Poisson brackets. J. Diff. Geom. 66, 71–137 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Berlin: Springer, 1996, pp. 120–348

  10. Fernandes R., Iglesias D.: Integrability of Poisson–Lie Group Actions. Lett. Math. Phys. 90, 137–159 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Fock V., Goncharov A.: Moduli spaces of local systems and higher Teichml̈ler theory. Publ. Math. IHES 103(1), 1–211 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Fock V., Marshakov A.: A note on quantum groups and relativistic Toda theory. Nucl. Phys. B. 56, 208–214 (1997)

    Article  MathSciNet  Google Scholar 

  13. Fock, V.V., Rosly, A.A.: Moduli space of flat connections as a Poisson manifold. In: Advances in quantum field theory and statistical mechanics: 2nd Italian-Russian collaboration (Como, 1996), Int. J. Mod. Phys. B 11, no. 26–27, 3195–3206 (1997)

  14. Hitchin, N.: Deformations of holomorphic Poisson manifolds. http://arxiv.org/abs/1105.4775v1 [math.DG], 2011

  15. Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. LMS Lect. Note Series 213, Cambridge: Cambridge Univ. Press, 2005

  16. Molev, A.: Yangians and classical Lie algebras. Mathematical Surveys and Monographs. 143, Providence, RI: Amer. Math. Soc., 2007

  17. Molev A., Ragoucy E.: Symmetries and invariants of twisted quantum algebras and associated Poisson algebras. Rev. Math. Phys. 20(2), 173–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Molev A., Ragoucy E., Sorba P.: Coideal subalgebras in quantum affine algebras. Rev. Math. Phys. 15, 789–822 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nelson J.E., Regge T.: Homotopy groups and (2 + 1)-dimensional quantum gravity. Nucl. Phys. B 328, 190–199 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  20. Nelson J.E., Regge T., Zertuche F.: Homotopy groups and (2 + 1)-dimensional quantum de Sitter gravity. Nucl. Phys. B 339, 516–532 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  21. Noumi M.: Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123(1), 16–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ugaglia M.: On a Poisson structure on the space of Stokes matrices. Int. Math. Res. Not. 1999(9), 473–493 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Mazzocco.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekhov, L., Mazzocco, M. Poisson Algebras of Block-Upper-Triangular Bilinear Forms and Braid Group Action. Commun. Math. Phys. 322, 49–71 (2013). https://doi.org/10.1007/s00220-013-1757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1757-3

Keywords

Navigation