Skip to main content
Log in

Quantum Lump Dynamics on the Two-Sphere

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that the low-energy classical dynamics of solitons of Bogomol’nyi type is well approximated by geodesic motion in \({{\sf M}_n}\), the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction \({\psi : {\sf M}_n \rightarrow \mathbb{C}}\) evolves according to the Hamiltonian \({H_0 = \frac{1}{2} \triangle}\), where \({\triangle}\) is the Laplacian on \({{\sf M}_n}\) . Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including \({\kappa}\), the scalar curvature of \({{\sf M}_n}\), and \({\fancyscript{C}}\), the n-soliton Casimir energy, which are usually difficult or impossible to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H 0 and two corrections to it suggested by work of Moss and Shiiki, namely \({H_1 = H_0 + \frac{1}{4} \kappa}\) and \({H_2 = H_1 + \fancyscript{C}}\), in the simple but nontrivial case of a single \({\mathbb{C}P^1}\) lump moving on the two-sphere. Here \({{\sf M}_1 = {\sf Rat}_1}\), a noncompact kähler 6-manifold invariant under an \({SO(3)\times SO(3)}\) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. By exploiting the diffeomorphism \({{\sf Rat}_1\cong TSO(3)}\), a hidden isometry of \({{\sf Rat}_1}\) is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on an SO(3) submanifold of \({{\sf Rat}_1}\), using standard results from harmonic map theory and zeta function regularization, and approximated numerically on the rest of \({{\sf Rat}_1}\). The lowest 19 eigenvalues of H i are found, and their spin-isospin and parity compared for i =  0, 1, 2. It is found that the curvature corrections in H 1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H 2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H 1 and H 2 is reduced when the target sphere is made smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. New York: Dover Publications, tenth edition, 1972

  2. Adkins G.S., Nappi C.R., Witten E.: Static properties of nucleons in the Skyrme model. Nucl. Phys. B 228, 552–584 (1983)

    Article  ADS  Google Scholar 

  3. Baptista J.M.: Some special Kähler metrics on \({SL(2,\mathbb{C})}\) and their holomorphic quantization. J. Geom. Phys. 50, 1–27 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Battye R.A., Manton N.S., Sutcliffe P.M., Wood S.W.: Light nuclei of even mass number in the Skyrme model. Phys. Rev. C 80, 034323–034338 (2009)

    Article  ADS  Google Scholar 

  5. Besse, A.L.: Einstein Manifolds. Berlin: Springer-Verlag, 2002

  6. Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Berlin Heidelberg-NewYork: Springer-Verlag, 1971

  7. Bizon P., Chmaj T., Tabor Z.: Formation of singularities for equivariant (2 + 1)-dimensional wave maps into the 2-sphere. Nonlinearity 14, 1041–1053 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Edmonds, E.R.: Angular Momentum in Quantum Mechanics. Princeton, NJ: Princeton University Press, 1960

  9. Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. Singapore: World Scientifique, 1994

  10. Faddeev, L.D.: Quantisation of solitons. Preprint IAS Print-75-QS70, Princeton, 1975

  11. Faddeev L.D., Niemi A.J.: Knots and particles. Nature 387, 58–61 (1997)

    Article  ADS  Google Scholar 

  12. Finkelstein D., Rubinstein J.: Connection between spin, statistics, and kinks. J. Math. Phys. 9, 1762–1779 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Gibbons G.W., Manton N.S.: Classical and quantum dynamics of BPS monopoles. Nucl. Phys. B 274, 183–224 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  14. Haskins M., Speight J.M.: The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps. J. Math. Phys. 44, 3470–94 (2003)

    Google Scholar 

  15. Irwin P.: Zero mode quantization of multi - Skyrmions. Phys. Rev. D 61, 114024–114057 (2000)

    Article  ADS  Google Scholar 

  16. Knapp, A.W.: Representation Theory of Semisimple Groups. Princeton NJ: Princeton University Press. 1986, p. 17

  17. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. New York: John Wiley, 1996 Volume II, p. 167

  18. Krusch S.: Homotopy of rational maps and the quantization of skyrmions. Ann. Phys. 304, 103–127 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Krusch S., Speight J.M.: Fermionic quantization of Hopf solitons. Commun. Math. Phys. 264, 391–410 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Lichnerowicz A.: Applications harmoniques et variétés kähleriennes. Symp. Math. Bologna 3, 341–402 (1970)

    ADS  Google Scholar 

  21. Linhart J.M., Sadun L.A.: Fast and slow blowup in the S 2 σ model and the (4 + 1)-dimensional Yang-Mills model. Nonlinearity 15, 219–238 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Manton N.S.: A remark on the scattering of BPS monopoles. Phys. Lett. 110, 54–56 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Manton, N.S., Sutcliffe, P.M.: Topological Solitons. Cambridge: Cambridge University Press, 2004

  24. McGlade, J.A.: The Dynamics of Topological Solitons within the Geodesic Approximation. PhD Thesis, University of Leeds, 2005

  25. McGlade J.A., Speight J.M.: Slow equivariant lump dynamics on the two-sphere. Nonlinearity 19, 441–452 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Meier F., Walliser H.: Quantum Corrections to Baryon Properties in Chiral Soliton Models. Phys. Rept. 289, 383–448 (1997)

    Article  ADS  Google Scholar 

  27. Moss I.G.: Soliton vacuum energies and the CP(1) model. Phys. Lett. B 460, 103–106 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Moss I.G., Shiiki N.: Quantum mechanics on moduli spaces. Nucl. Phys. B 565, 345–362 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Moss, I.G., Shiiki, N., Torii, T.: Vacuum energy of CP(1) solitons. (Preprint: arXiv:hep-ph/0103240, 2001)

  30. Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford: Oxford University Press, 1993

  31. Rodnianski I., Sterbenz J.: On the Formation of Singularities in the Critical O(3) Sigma-Model. Ann. Math. 172, 187–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruback, P.J.: Sigma model solitons and their moduli space metrics. Commun. Math. Phys. 116, 645–658

  33. Sadun L., Speight J.M.: Geodesic incompleteness in the \({\mathbb{C}P^1}\) model on a compact Riemann surface. Lett. Math. Phys. 43, 329–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith R.T.: The second variation formula for harmonic mappings. Proc. Amer. Math. Soc. 47, 229–36 (1975)

    Google Scholar 

  35. Speight J.M.: Low energy dynamics of a \({\mathbb{C}P^1}\) lump on the sphere. J. Math. Phys. 36, 796–813 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Speight J.M.: The L 2 geometry of spaces of harmonic maps S 2S 2 and \({\mathbb{R}P^2 \rightarrow \mathbb{R}P^2}\). J. Geom. Phys. 47, 343–368 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Stuart D.: The geodesic approximation for the Yang-Mills-Higgs equations. Commun. Math. Phys. 166, 149–90 (1994)

    Google Scholar 

  38. Urakawa, H.: Calculus of Variations and Harmonic Maps. Providence, RI: Amer. Math. Soc., 1993

  39. Willmore, T.J.: Riemannian Geometry. Oxford: Clarendon Press, 1993, p. 57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krusch.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krusch, S., Speight, J.M. Quantum Lump Dynamics on the Two-Sphere. Commun. Math. Phys. 322, 95–126 (2013). https://doi.org/10.1007/s00220-013-1730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1730-1

Keywords

Navigation