Skip to main content
Log in

The Yang-Mills Heat Semigroup on Three-Manifolds with Boundary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Long time existence and uniqueness of solutions to the Yang-Mills heat equation is proven over a compact 3-manifold with smooth boundary. The initial data is taken to be a Lie algebra valued connection form in the Sobolev space H 1. Three kinds of boundary conditions are explored, Dirichlet type, Neumann type and Marini boundary conditions. The last is a nonlinear boundary condition, specified by setting the normal component of the curvature to zero on the boundary. The Yang-Mills heat equation is a weakly parabolic nonlinear equation. We use gauge symmetry breaking to convert it to a parabolic equation and then gauge transform the solution of the parabolic equation back to a solution of the original equation. Apriori estimates are developed by first establishing a gauge invariant version of the Gaffney-Friedrichs inequality. A gauge invariant regularization procedure for solutions is also established. Uniqueness holds upon imposition of boundary conditions on only two of the three components of the connection form because of weak parabolicity. This work is motivated by possible applications to quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez J., Eydenberg M.S., Obiedat H.: The action of operator semigroups on the topological dual of the Beurling-Björck space. J. Math. Anal. Appl. 339(1), 405–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnaudon M., Bauer R.O., Thalmaier A.: A probabilistic approach to the Yang-Mills heat equation. J. Math. Pures Appl. (9) 81(2), 143–166 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Atiyah M. F., Bott R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bourguignon J.-P., Lawson H.B. Jr: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys. 79(2), 189–230 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Butzer, P.L., Berens, H.: Semi-groups of operators and approximation. Die Grundlehren der mathematischen Wissenschaften, Band 145, New York: Springer-Verlag New York Inc., 1967

  6. Chen, Y.M., Shen, C.L.: Evolution of Yang-Mills connections. In: Differential geometry (Shanghai, 1991), River Edge, NJ: World Sci. Publ., 1993, pp. 33–41

  7. Conner P.E.: The Neumann’s problem for differential forms on Riemannian manifolds. Mem. Amer. Math. Soc. 1956(20), 56 (1956)

    MathSciNet  Google Scholar 

  8. DeTurck D.M.: Deforming metrics in the direction of their Ricci tensors. J. Diff. Geom. 18(1), 157–162 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Donaldson S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc. (3) 50(1), 1–26 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donaldson S.K.: Boundary value problems for Yang-Mills fields. J. Geom. Phys. 8(1–4), 89–122 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford Mathematical Monographs, New York: The Clarendon Press/Oxford University Press, 1990

  12. Friedrichs K.O.: Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8, 551–590 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaffney M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U. S. A. 37, 48–50 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry. Third ed., Universitext, Berlin: Springer- Verlag, 2004

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics. Berlin: Springer-Verlag, 2001, reprint of the 1998 edition

  16. Ginibre J., Velo G.: Global existence of coupled Yang-Mills and scalar fields in (2 + 1)-dimensional space-time. Phys. Lett. B 99(5), 405–410 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ginibre, J., Velo, G.: The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys. 82(1), 1–28 (1981/82)

    Google Scholar 

  18. Glimm, J., Jaffe, A.: Quantum physics. Second ed., New York: Springer-Verlag, 1987

  19. Gross L.: Convergence of U(1)3 lattice gauge theory to its continuum limit. Commun. Math. Phys. 92(2), 137–162 (1983)

    Article  ADS  MATH  Google Scholar 

  20. Gryc W.E.: On the holonomy of the Coulomb connection over manifolds with boundary. J. Math. Phys. 49(6), 062904 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hassell A.: The Yang-Mills-Higgs heat flow on R 3. J. Funct. Anal. 111(2), 431–448 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hong M.-C.: Heat flow for the Yang-Mills-Higgs field and the Hermitian Yang-Mills-Higgs metric. Ann. Global Anal. Geom. 20(1), 23–46 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong M.-C., Tian G.: Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections. Math. Ann. 330(3), 441–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong M.-C., Tian G.: Global existence of the m-equivariant Yang-Mills flow in four dimensional spaces. Commun. Anal. Geom. 12(1–2), 183–211 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Kogut J.B., Suskind L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)

    Article  ADS  Google Scholar 

  26. LePage G.P. et al.: Accurate determinations of α s from realistic lattice qcd. Phys. Rev. Lett. 95, 052002-1–052002-4 (2005)

    ADS  Google Scholar 

  27. Lions J.L.: Sur les espaces d’interpolation; dualité. Math. Scand. 9, 147–177 (1961)

    MathSciNet  MATH  Google Scholar 

  28. Lüscher, M.: Properties and uses of the Wilson flow in lattice QCD. J. High Energy Phys. no. 8, 071, 18. (2010)

    Google Scholar 

  29. Lüscher M.: Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. Phys. 293(3), 899–919 (2010)

    Article  MATH  Google Scholar 

  30. Lüscher, M., Weisz, P.: Perturbative analysis of the gradient flow in non-abelian gauge theories. J. High Energy Phys. no. 2, 051, i, 22 (2011)

    Google Scholar 

  31. Marini A.: Dirichlet and Neumann boundary value problems for Yang-Mills connections. Comm. Pure Appl. Math. 45(8), 1015–1050 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marini, A.: Elliptic boundary value problems for connections: a non-linear Hodge theory. Mat. Contemp. 2, 195–205 (1992), Workshop on the Geometry and Topology of Gauge Fields (Campinas, 1991)

  33. Marini A.: The generalized Neumann problem for Yang-Mills connections. Comm. Part. Diff. Eqs. 24(3-4), 665–681 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matsuzawa T.: A calculus approach to hyperfunctions. I. Nagoya Math. J. 108, 53–66 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Matsuzawa T.: A calculus approach to hyperfunctions II. Trans. Amer. Math. Soc. 313(2), 619–654 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Matsuzawa T.: A calculus approach to hyperfunctions. III. Nagoya Math. J. 118, 133–153 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Mendez-Hernandez P.J., Murata M.: Semismall perturbations, semi-intrinsic ultracontractivity, and integral representations of nonnegative solutions for parabolic equations. J. Funct. Anal. 257(6), 1799–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mitrea D., Mitrea M., Taylor M.: Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Amer. Math. Soc. 150(713), x+120 (2001)

    MathSciNet  Google Scholar 

  39. Mitrea M.: Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math. 13(4), 531–567 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morrey C.B. Jr: A variational method in the theory of harmonic integrals. II. Amer. J. Math. 78, 137–170 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Morrey C.B. Jr, Eells J. Jr: A variational method in the theory of harmonic integrals. I. Ann. of Math. (2) 63, 91–128 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  42. Narasimhan M.S., Ramadas T.R.: Geometry of SU(2) gauge fields. Commun. Math. Phys. 67(2), 121–136 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Pulemotov A.: The Li-Yau-Hamilton estimate and the Yang-Mills heat equation on manifolds with boundary. J. Funct. Anal. 255(10), 2933–2965 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Råde J.: On the Yang-Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431, 123–163 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Ray D.B., Singer I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. in Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sadun, L.A.: Continuum regularized Yang-Mills theory. Ph. D. Thesis, Univ. of California, Berkeley, 1987, 67+ pages

  47. Saranen J.: On an inequality of Friedrichs. Math. Scand. 51(2), 310–322 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159, Berlin: Springer-Verlag, 1982

  49. Sengupta, A.: Gauge theory on compact surfaces. Mem. Amer. Math. Soc. 126(600) (1997)

  50. Sengupta, A.N.: Gauge theory in two dimensions: topological, geometric and probabilistic aspects. In: Stochastic analysis in mathematical physics, Hackensack, NJ: World Sci. Publ., 2008, pp. 109–129

  51. Singer I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys. 60(1), 7–12 (1978)

    Article  ADS  MATH  Google Scholar 

  52. Singer I.M.: The geometry of the orbit space for nonabelian gauge theories. Phys. Scripta 24(5), 817–820 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that. Princeton Landmarks in Physics, Princeton, NJ: Princeton University Press, 2000, Corrected third printing of the 1978 edition

  54. Taibleson M.H.: On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal properties. J. Math. Mech. 13, 407–479 (1964)

    MathSciNet  Google Scholar 

  55. Taibleson M.H.: On the theory of Lipschitz spaces of distributions on Euclidean n-space. II. Translation invariant operators, duality, and interpolation. J. Math. Mech. 14, 821–839 (1965)

    MathSciNet  Google Scholar 

  56. Taibleson M.H.: On the theory of Lipschitz spaces of distributions on Euclidean n-space. III. Smoothness and integrability of Fourier tansforms, smoothness of convolution kernels. J. Math. Mech. 15, 973–981 (1966)

    MathSciNet  MATH  Google Scholar 

  57. Taylor, M.E.: Partial differential equations, Texts in Applied Mathematics, Vol. 23, New York: Springer-Verlag, 1996

  58. Taylor, M.E.: Partial differential equations. III. Applied Mathematical Sciences, Vol. 117, New York: Springer-Verlag, 1997, Corrected reprint of the 1996 original

  59. Wilson K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  60. Zwanziger D.: Covariant quantization of gauge fields without Gribov ambiguity. Nucl. Phys. B 192(1), 259–269 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Gross.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charalambous, N., Gross, L. The Yang-Mills Heat Semigroup on Three-Manifolds with Boundary. Commun. Math. Phys. 317, 727–785 (2013). https://doi.org/10.1007/s00220-012-1558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1558-0

Keywords

Navigation