Skip to main content
Log in

From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the connection between a system of many independent Brownian particles on one hand and the deterministic diffusion equation on the other. For a fixed time step h > 0, a large-deviations rate functional J h characterizes the behaviour of the particle system at t = h in terms of the initial distribution at t = 0. For the diffusion equation, a single step in the time-discretized entropy-Wasserstein gradient flow is characterized by the minimization of a functional K h . We establish a new connection between these systems by proving that J h and K h are equal up to second order in h as h → 0. This result gives a microscopic explanation of the origin of the entropy-Wasserstein gradient flow formulation of the diffusion equation. Simultaneously, the limit passage presented here gives a physically natural description of the underlying particle system by describing it as an entropic gradient flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in mathematics ETH Zürich. Basel: Birkhäuser, 2005

  2. Beurling A.: An automorphism of product measures. Ann. Math. 72(1), 189–200 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braides, A.: Gamma-Convergence for Beginners. Oxford: Oxford University Press, 2002

  4. Berkowitz B., Scher H.: Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E 57(5), 5858–5869 (1998)

    Article  ADS  Google Scholar 

  5. Berkowitz B., Scher H., Silliman S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1), 149–158 (2000)

    Article  ADS  Google Scholar 

  6. Carrillo J.A., McCann R.J., Villani C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rat. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Csiszár I.: Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. 12(3), 768–793 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. den Hollander, F.: Large Deviations. Providence, RI: Amer. Math. Soc., 2000

  9. Dal Maso, G.: An Introduction to Γ-Convergence, Volume 8 of Progress in Nonlinear Differential Equations and Their Applications. Boston: Birkhäuser, First edition, 1993

  10. De Masi, A., Presutti, E.: Mathematical methods for hydrodynamic limits. Lecture Notes in Mathematics, Berlin-Heidelberg-New York; Springer, 1992

  11. Deuschel, J.D., Stroock, D.W.: Large deviations. London, New York: Academic Press, 1989

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press, 1992

  13. Einstein A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17(4), 548–560 (1905)

    ADS  Google Scholar 

  14. Georgii, H.-O.: Gibbs Measures and Phase Transitions. Berlin: de Gruyter, 1988

  15. Glasner K.: A diffuse-interface approach to Hele-Shaw flow. Nonlinearity 16(1), 49–66 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Giacomelli L., Otto F.: Variational formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. Part. Diff. Eqs. 13(3), 377–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gianazza U., Savaré G., Toscani G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194(1), 133–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang C., Jordan R.: Variational formulations for Vlasov-Poisson-Fokker-Planck systems. Math. Meth. Appl. Sci. 23(9), 803–843 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang C.: A variational principle for the Kramers equation with unbounded external forces. J. Math. Anal. Appl. 250(1), 333–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jordan R., Kinderlehrer D., Otto F.: Free energy and the Fokker-Planck equation. Physica D: Nonlinear Phenomena 107(2-4), 265–271 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck Equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Berlin-Heidelberg-New York: Springer Verlag, 1999

  23. Kipnis C., Olla S.: Large deviations from the hydrodynamical limit for a system of independent Brownian particles. Stoch. and Stoch. Reps. 33(1-2), 17–25 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Léonard, C.: A large deviation approach to optimal transport. http://arXiv.org/abs/0710.1461v1 [math.PR], 2007

  25. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matthes, D., McCann, R.J. Savaré, G.: A family of nonlinear fourth order equations of gradient flow type. http://arXiv.org/abs/0901.0540vL [math.AP], 2009

  27. Olver, F.W.J.: Asymptotics and Special Functions. London-New York: Academic Press, 1997

  28. Otto F.: Lubrication approximation with prescribed nonzero contact angle. Comm. Part. Diff. Eqs. 23(11), 63–103 (1998)

    Article  MathSciNet  Google Scholar 

  29. Otto F.: The geometry of dissipative evolution equations: The porous medium equation. Comm. Part. Diff. Eqs. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Portegies J.W., Peletier M.A.: Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows. Interfaces and Free Boundaries 12, 121–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl, 144–153 (1931)

  32. Villani, C.: Topics in Optimal Transportation. Providence, RI: Amer. Math. Soc., 2003

  33. Villani, C.: Optimal transport: Old and new. Springer Verlag, 2009

  34. Weeks E.R., Weitz D.A.: Subdiffusion and the cage effect studied near the colloidal glass transition. Chem. Phys. 284(1-2), 361–367 (2002)

    Article  ADS  Google Scholar 

  35. Yeh, J.: Real Analysis: Theory of Measure and Integration. River Edge, NJ: World Scientific, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Adams.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, S., Dirr, N., Peletier, M.A. et al. From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage. Commun. Math. Phys. 307, 791–815 (2011). https://doi.org/10.1007/s00220-011-1328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1328-4

Keywords

Navigation