Skip to main content
Log in

A chemometric-assisted LC–MS/MS method for the simultaneous determination of 17 limonoids from different parts of Xylocarpus granatum fruit

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The marine mangrove Xylocarpus granatum is used as a folk medicine and is rich in bioactive limonoids. The quantitative determination of the chemical composition and distribution of limonoids in different parts of X. granatum fruit (fruit peel, seed coat, seed kernels, seed, and fruit) is significant for authentication and quality control purposes. However, the quantitative determination of limonoids in X. granatum has not yet been reported. In this study, a chemometric-assisted liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of 17 limonoids to reveal the chemical composition and distribution in different parts of X. granatum fruit. Ultrasonic-assisted extraction, optimized by response surface methodology (RSM), was more accurate than the general one-variable-at-a-time method. The overall distribution of 17 limonoids in different parts of X. granatum fruit had the following order: seed kernels > seed > fruit, and 13 limonoids showed a rank order of seed kernels > seed > fruit > fruit peel > seed coat. Furthermore, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze the LC–MS/MS data and provide a chemometric model for easy visualization and interpretation to classify the different parts of X. granatum fruit. In addition, the study indicated that the chemometric-assisted strategy, consisting of RSM, PCA, and OPLS-DA for the development, optimization, and data analysis of multicomponent quantitation by LC–MS/MS, is effective and feasible. This study provided the chemical composition and distribution evidence for the authentication and quality control of X. granatum fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mulholland DA, Taylor DAH. Limonoids from Australian members of the meliaceae. Phytochemistry. 1992;31(12):4163–6. doi:10.1016/0031-9422(92)80434-G.

    Article  CAS  Google Scholar 

  2. Tan QG, Luo XD. Meliaceous limonoids: chemistry and biological activities. Chem Rev. 2011;111(11):7437–522. doi:10.1021/cr9004023.

    Article  CAS  Google Scholar 

  3. Shen LR, Guo D, Yu YM, Yin BW, Zhao L, Shi QW, et al. Chemical constituents of plants from the genus Xylocarpus. Chem Biodivers. 2009;6(9):1293–308.

    Article  CAS  Google Scholar 

  4. Lakshmi V, Singh N, Shrivastva S, Mishra SK, Dharmani P, Mishra V, et al. Gedunin and Photogedunin of Xylocarpus granatum show significant anti-secretory effects and protect the gastric mucosa of peptic ulcer in rats. Phytomedicine. 2010;17(8–9):569–74.

    Article  CAS  Google Scholar 

  5. Misra S, Verma M, Mishra SK, Srivastava S, Lakshmi V, Misra-Bhattacharya S. Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host. Parasitol Res. 2011;109(5):1351–60.

    Article  Google Scholar 

  6. Lakshmi V, Srivastava S, Mishra SK, Srivastava MN, Srivastava K, Puri SK. Antimalarial activity in Xylocarpus granatum (Koen). Nat Prod Res. 2012;26(11):1012–5.

    Article  CAS  Google Scholar 

  7. Yin X, Li X, Hao YG, Zhao YW, Zhou JH, Shi HS. Xylocarpin H, a limonoid of Xylocarpus granatum, produces antidepressant-like activities in mice. J Behav Brain Sci. 2015;5:524–32.

    Article  Google Scholar 

  8. Gao Q, Gao Y, Song H, Li JL, Wu YB, Shi XW, et al. Cipadesin A, a bioactive ingredient of Xylocarpus granatum, produces antidepressant-like effects in adult mice. Neurosci Lett. 2016;633:33–9. doi:10.1016/j.neulet.2016.08.062.

    Article  CAS  Google Scholar 

  9. Li MY, Xiao Q, Satyanandamurty T, Wu J. Limonoids with an oxygen bridge between C(1) and C(29) from the seeds of a Krishna mangrove, Xylocarpus granatum. Chem Biodivers. 2014;11(2):262–75.

    Article  CAS  Google Scholar 

  10. Wu YB, Qing X, Huo CH, Yan HM, Shi QW, Sauriol F, et al. Xylomexicanins E-H, new limonoids from Xylocarpus granatum. Tetrahedron. 2014;70(30):4557–62.

    Article  CAS  Google Scholar 

  11. Zhou ZF, Liu HL, Zhang W, Kurtan T, Mandi A, Benyei A, et al. Bioactive rearranged limonoids from the Chinese mangrove Xylocarpus granatum Koenig. Tetrahedron. 2014;70(37):6444–9.

    Article  CAS  Google Scholar 

  12. Wu YB, Liu D, Liu PY, Yang XM, Liao M, Lu NN, et al. New limonoids from the seeds of Xylocarpus granatum. Helv Chim Acta. 2015;98(5):691–8. doi:10.1002/hlca.201400290.

    Article  CAS  Google Scholar 

  13. Zhou ZF, Kurtan T, Mandi A, Gu YC, Yao LG, Xin GR, et al. Novel and neuroprotective tetranortriterpenoids from Chinese mangrove Xylocarpus granatum Koenig. Sci Rep. 2016;6 doi:10.1038/srep33908.

  14. Pudhom K, Sommit D, Nuclear P, Ngamrojanavanich N, Petsom A, Protoxylocarpins F-H. Protolimonoids from seed kernels of Xylocarpus granatum. J Nat Prod. 2009;72(12):2188–91. doi:10.1021/np900640u.

    Article  CAS  Google Scholar 

  15. Pan Y, Zhang J, Shen T, Zhao YL, Zuo ZT, Wang YZ, et al. Investigation of chemical diversity in different parts and origins of ethnomedicine Gentiana Rigescens Franch using targeted metabolite profiling and multivariate statistical analysis. Biomed Chromatogr. 2016;30(2):232–40. doi:10.1002/bmc.3540.

    Article  CAS  Google Scholar 

  16. Qiu S, Yang WZ, Yao CL, Qiu ZD, Shi XJ, Zhang JX, et al. Nontargeted metabolomic analysis and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J Chromatogr A. 2016;1453:78–87. doi:10.1016/j.chroma.2016.05.051.

    Article  CAS  Google Scholar 

  17. Tian Q, Ding X. Screening for limonoid glucosides in Citrus tangerina (Tanaka) Tseng by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2000;874(1):13–9.

    Article  CAS  Google Scholar 

  18. Manners GD, Breksa AP III, Schoch TK, Hidalgo MB. Analysis of bitter limonoids in citrus juices by atmospheric pressure chemical ionization and electrospray ionization liquid chromatography-mass spectrometry. J Agric Food Chem. 2003;51(13):3709–14. doi:10.1021/jf021124t.

    Article  CAS  Google Scholar 

  19. Tian Q, Schwartz SJ. Mass spectrometry and tandem mass spectrometry of citrus limonoids. Anal Chem. 2003;75(20):5451–60.

    Article  CAS  Google Scholar 

  20. Manners GD, Breksa AP III. Identifying citrus limonoid aglycones by HPLC-EI/MS and HPLC-APCI/MS techniques. Phytochem Anal. 2004;15(6):372–81. doi:10.1002/pca.790.

    Article  CAS  Google Scholar 

  21. Jayaprakasha GK, Dandekar DV, Tichy SE, Patil BS. Simultaneous separation and identification of limonoids from citrus using liquid chromatography-collision-induced dissociation mass spectra. J Sep Sci. 2011;34(1):2–10. doi:10.1002/jssc.201000644.

    Article  CAS  Google Scholar 

  22. Yang W, Fang DM, He HP, Hao XJ, Wu ZJ, Zhang GL. Analysis of mexicanolide- and phragmalin-type limonoids from Heynea trijuga using high-performance liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(11):1203–12. doi:10.1002/rcm.6563.

    Article  CAS  Google Scholar 

  23. Ren W, Li Y, Zuo R, Wang HJ, Si N, Zhao HY, et al. Species-related difference between limonin and obacunone among five liver microsomes and zebrafish using ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass spectrometer. Rapid Commun Mass Spectrom. 2014;28(21):2292–300. doi:10.1002/rcm.7026.

    Article  CAS  Google Scholar 

  24. Schilling B, MacLean B, Held JM, Sahu AK, Rardin MJ, Sorensen DJ, et al. Multiplexed, scheduled, high-resolution parallel reaction monitoring on a full scan QqTOF instrument with integrated data-dependent and targeted mass spectrometric workflows. Anal Chem. 2015;87(20):10222–9. doi:10.1021/acs.analchem.5b02983.

    Article  CAS  Google Scholar 

  25. Song Y, Zhang N, Shi S, Li J, Zhao Y, Zhang Q, et al. Homolog-focused profiling of ginsenosides based on the integration of step-wise formate anion-to-deprotonated ion transition screening and scheduled multiple reaction monitoring. J Chromatogr A. 2015;1406:136–44. doi:10.1016/j.chroma.2015.06.007.

    Article  CAS  Google Scholar 

  26. Song Y, Song Q, Li J, Zhang N, Zhao Y, Liu X, et al. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry. J Chromatogr A. 2016;1429:238–47. doi:10.1016/j.chroma.2015.12.045.

    Article  CAS  Google Scholar 

  27. Fillatre Y, Rondeau D, Jadas-Hecart A, Communal PY. Advantages of the scheduled selected reaction monitoring algorithm in liquid chromatography/electrospray ionization tandem mass spectrometry multi-residue analysis of 242 pesticides: a comparative approach with classical selected reaction monitoring mode. Rapid Commun Mass Spectrom. 2010;24(16):2453–61. doi:10.1002/rcm.4649.

    Article  Google Scholar 

  28. Schreiber A, Pace N. Intelligent use of retention time during multiple reaction monitoring for faster and extended compound screening with higher sensitivity and better reproducibility. AB Sciex application note 2010. Available from http://www.absciex.com.cn/Documents/Downloads/Literature/mass-spectrometry-Multiple-Reaction-1282310.pdf; 2010.

  29. Esteve C, Herrero L, Gomara B, Quintanilla-Lopez JE. Fast and simultaneous determination of endocrine disrupting compounds by ultra-high performance liquid chromatography-tandem mass spectrometry. Talanta. 2016;146:326–34. doi:10.1016/j.talanta.2015.08.064.

    Article  CAS  Google Scholar 

  30. Mi JN, Wang JR, Jiang ZH. Quantitative profiling of sphingolipids in wild Cordyceps and its mycelia by using UHPLC-MS. Sci Rep. 2016;6 doi:10.1038/srep20870.

  31. Fu S, Zhang J, Li T, Wang S, Ding WJ, Zhao MM, et al. Multi-responses extraction optimization based on response surface methodology combined with polarity switching HPLC MS/MS for the simultaneous quantitation of 11 compounds in Cortex Fraxini: application to four species of Cortex Fraxini and its 3 confusable species. J Pharm Biomed Anal. 2014;91:210–21. doi:10.1016/j.jpba.2013.12.033.

    Article  CAS  Google Scholar 

  32. Zhong JS, Wan JZ, Ding WJ, Wu XF, Xie ZY. Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller. J Pharm Biomed Anal. 2015;107:131–40. doi:10.1016/j.jpba.2014.12.032.

    Article  CAS  Google Scholar 

  33. Farag MA, Rasheed DM, Kropf M, Heiss AG. Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses. Anal Bioanal Chem. 2016;408(28):8065–78. doi:10.1007/s00216-016-9910-4.

    Article  CAS  Google Scholar 

  34. Wu YB, Su J, Ni ZY, Qi JL, Huo CH, Dong M, et al. Chemical constituents of Xylocarpus granatum. Chem Nat Compd. 2014;50(3):549–51.

    Article  CAS  Google Scholar 

  35. Yin BW, Huo CH, Shen LR, Wang C, Zhao L, Wang YL, et al. Protolimonoids from the seeds of Xylocarpus granatum. Biochem Syst Ecol. 2009;37(3):218–20.

    Article  CAS  Google Scholar 

  36. Huo C, Yin B, Shen L, Zhao L, Dong M, Shi Q et al., editors. Study on chemical constituents of mangrove Xylocarpus granatum. Proceedings of annual conference of Chinese Pharmaceutical Association and the eighth Chinese Pharmacist’s week. Shijiazhuang, China; 2008.

  37. Wu Y-B, Ni Z-Y, Huo C-H, Su J, Dong M, Sauriol F, et al. Xylomexicanins C and D, new Mexicanolide-type limonoids from Xylocarpus granatum. Biosci Biotechnol Biochem. 2013;77(4):736–40. doi:10.1271/bbb.120815.

    Article  CAS  Google Scholar 

  38. Shi X, Zhang K, Xue N, Su L, Ma G, Qi J, et al. Differentiation of genuine Inula britannica L. and substitute specimens based on the determination of 15 components using LC-MS/MS and principal components analysis. Food Chem. 2013;141(4):4019–25. doi:10.1016/j.foodchem.2013.06.123.

    Article  CAS  Google Scholar 

  39. Du Y, Liu P, Yuan Z, Jin Y, Zhang X, Sheng X, et al. Simultaneous qualitative and quantitative analysis of 28 components in Isodon rubescens by HPLC-ESI-MS/MS. J Sep Sci. 2010;33(4–5):545–57. doi:10.1002/jssc.200900704.

    Article  CAS  Google Scholar 

  40. Lindgren F, Hansen B, Karcher W, Sjöström M, Eriksson L. Model validation by permutation tests: applications to variable selection. J Chemom. 1996;10(5–6):521–32. doi:10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J.

    Article  CAS  Google Scholar 

  41. Zhou J, Liu H, Liu Y, Liu J, Zhao X, Yin Y. Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal Chem. 2016;88(8):4478–86. doi:10.1021/acs.analchem.6b00355.

    Article  CAS  Google Scholar 

  42. Gritti F, Guiochon G. Repeatability of the efficiency of columns packed with sub-3mum core-shell particles: part I. 2.6mum Kinetex-C(18) particles in 4.6mm and 2.1mmx100mm column formats. J Chromatogr A. 2012;1252:31–44. doi:10.1016/j.chroma.2012.05.072.

    Article  CAS  Google Scholar 

  43. Dubbelman AC, Cuyckens F, Dillen L, Gross G, Hankemeier T, Vreeken RJ. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity. J Chromatogr A. 2014;1374:122–33. doi:10.1016/j.chroma.2014.11.037.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of Hebei Province of China (No. H2017206087) and the Educational Commission of Hebei Province of China (No. QN2017098). We also wish to extend our sincere thanks to Syngenta Ltd. (Syngenta-Hebei Medical University-PhD Studentship Agreement) and the Hebei Medical University Development Project (2016-kyfz111) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingwen Shi or Changhong Huo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 3440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wu, Y., Lv, T. et al. A chemometric-assisted LC–MS/MS method for the simultaneous determination of 17 limonoids from different parts of Xylocarpus granatum fruit. Anal Bioanal Chem 409, 4669–4679 (2017). https://doi.org/10.1007/s00216-017-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0413-8

Keywords

Navigation