Skip to main content
Log in

Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

International limits have been established for metal impurities in cosmetics to prevent overexposure to heavy metal ions. Sweeping via dynamic chelation was developed using capillary electrophoresis to analyze lead (Pb), cadmium (Cd) and mercury (Hg) impurities in cosmetics. The sweeping via dynamic chelation mechanism involves a large volume of metal ions being swept by a small quantity of chelating agents that were electrokinetically injected into the capillary to chelate metal ions and increase the detection sensitivity. The optimized conditions were as follows: Firstly, the capillary was rinsed by a 0.6 mM TTAB solution to reverse the EOF. The sample solution, which was diluted using 25 mM ammonium acetate (pH 6.0), was injected into the capillary using a pressure of 3.5 psi for 99.9 s. Then, EDTA was injected at −25 kV for 1 min from the EDTA buffer (25 mM ammonium acetate containing 0.6 mM TTAB and 5 mM EDTA), and the metal ions were swept and stacked simultaneously. Finally, the separation was performed at −20 kV using a separation buffer (100 mM ammonium acetate (pH 6.0)). A small quantity of chelating agents introduced into the capillary could yield 33-, 50- and 100-fold detection improvements for Pb, Cd and Hg, respectively, more sensitive than conventional capillary zone electrophoresis. Correlation coefficients greater than 0.998 indicated that this method exhibited good linearity. The relative standard deviation and relative error were less than 8.7%, indicating high precision and accuracy. The recovery value of the homemade lotion, which was employed to simulate the real sample matrix, was 93-104%, which indicated that the sample matrix does not affect the quantitative results. Finally, commercial cosmetics were employed to demonstrate the feasibility of the method to determine Pb, Cd and Hg without complicated sample pretreatment.

The procedure of analyzing metal ions in cosmetics by sweeping via dynamic chelation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Atomic absorption

AES:

Atomic emission spectroscopy

Cd:

Cadmium

CTAB:

Cetyltrimethyl ammonium bromide

DTAB:

Dodecyl trimethylammonium bromide

Hg:

Mercury

HPLC:

High-performance liquid chromatography

ICP-AES/MS:

Inductively coupled plasma atomic emission spectroscopy/mass spectrometry

LIF:

Laser induced fluorescence

LOD:

Limit of detection

Pb:

Lead

TTAB:

Tetradecyltrimethylammonium bromide

UV:

Ultraviolet

References

  1. Charter E, Dueckman M, Kurychak A, Martyn B, Nnebe N, Raymer B. Heavy metal hazard: the health risks pf hidden heavy metals on face makeup. Toronto, Canada: Environmental defence; 2011.

    Google Scholar 

  2. Chan TY. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin Toxicol. 2011;49:886–91.

    Article  CAS  Google Scholar 

  3. Borowska S, Brzoska MM. Metals in cosmetics: implications for human health. J Appl Toxicol. 2015;35:551–72.

    Article  CAS  Google Scholar 

  4. Gidlow DA. Lead toxicity. Occup Med. 2015;65:348–56.

    Article  CAS  Google Scholar 

  5. Bernhoft RA. Cadmium toxicity and treatment. Scientific World J. 2013, ID 394652

  6. Bocca B, Pino A, Alimonti A, Forte G. Regul Toxicol Pharmacol. 2014;68:447–67.

    Article  CAS  Google Scholar 

  7. Narin I, Soylak M, Elci L, Doğan M. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta. 2002;52:1041–6.

    Article  Google Scholar 

  8. Ding H, Wang J, Dorsey JG, Caruso JA. Arsenic speciation by micellar liquid chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr A. 1995;694:425–31.

    Article  CAS  Google Scholar 

  9. Rahmalan A, Zshari M, Marsin Sanagi M. M. Rashid. Determination of heavy metals in air particulate matter by ion chromatography. J Chromatogr A. 1996;739:233–9.

    Article  CAS  Google Scholar 

  10. Corr JJ, Anacleto JF. Analysis of inorganic species by capillary electrophoresis-mass spectrometry and ion exchange chromatography-mass spectrometry using an ion spray source. Anal Chem. 1996;68:2155–63.

    Article  CAS  Google Scholar 

  11. Huang YM, Whang CW. Capillary electrophoresis of arsenic compounds with indirect fluorescence detection. Electrophoresis. 1998;19:2140–4.

    Article  CAS  Google Scholar 

  12. Regan FB, Meaney MP, Lunte SM. Determination of metal ions by capillary electrophoresis using on-column complexation with 4-(2-pyridylazo)resorcinol following trace enrichment by peak stacking. J Chromatogr B Biomed Appl. 1994;657:409–17.

    Article  CAS  Google Scholar 

  13. Timerbaev AR, Semenova OP, Jandik P, Bonn GK. Metal ion capillary electrophoresis with direct UV detection effect of a charged surfactant on the migration behaviour of metal chelates. J Chromatogr A. 1994;671:419–27.

    Article  CAS  Google Scholar 

  14. Motomizu S, Oshima M, Matsuda SY, Obata Y, Tanaka H. Separation and determination of alkaline-earth metal ions as UV absorbing chelates with EDTA by capillary electrophoresis. Determination of calcium and magnesium in water and serum samples. Anal Sci. 1992;8:619–25.

    Article  CAS  Google Scholar 

  15. Haumann I, Bächann K. On-column chelation of metal ions in capillary zone Electrophoresis. J Chromatogr A. 1995;717:385–91.

    Article  CAS  Google Scholar 

  16. Baraj B, Martínez M, Sastre A, M.Aguilar. Simultaneous determination of Cr (III), Fe (III), Cu (II) and Pb (II) as UV-absorbing EDTA complexes by capillary zone electrophoresis. J Chromatogr A. 1995; 695: 103–111.

  17. Conradi S, Vogt C, Wittrisch H, Knobloch G, Werner G. Capillary electrophoretic separation of metal ions using complex forming equilibria of different stabilities. J Chromatogr A. 1996;745:103–9.

    Article  CAS  Google Scholar 

  18. Liu W, Lee HK. Simultaneous analysis of lead, mercury and selenium species by capillary electrophoresis with combined ethylenediaminetetraacetic acid complexation and field-amplified stacking injection. Electrophoresis. 1999;20:2475–83.

    Article  CAS  Google Scholar 

  19. Quirino JP, Haddad PR. Separation and sweeping of metal ions with EDTA in CZE-ESI-MS. J Sep Sci. 2011:34: 2872-78

  20. Wang T, Li SFY. Migration behavior of alkali and alkaline-earth metal ion-EDTA complexes and quantitative analysis of magnesium in real samples by capillary electrophoresis with indirect ultraviolet detection. J Chromatogr A. 1995;707:343–53.

    Article  CAS  Google Scholar 

  21. Breadmore MC, Macka M, Haddad PR. Theoretical migration model for micellar capillary electrophoresis and its application to the separation of anionic metal complexes of HEDTC and CDTA. Anal Chem. 1999;71:1826–33.

    Article  CAS  Google Scholar 

  22. Isoo K, Terabe S. Metal complex separation with on-line sample preconcentration in micellar electrokinetic chromatography. Anal Sci. 2005;21:43–7.

    Article  CAS  Google Scholar 

  23. Padarauskas A, Schwedt G. Capillary electrophoresis in metal analysis: Investigations of multi-elemental separation of metal chelates with aminopolycarboxylic acids. J Chromatogr A. 1997;773:351–60.

    Article  CAS  Google Scholar 

  24. Shi Y, Fritz JS. Separation of metal ions by capillary electrophoresis with a complexing electrolyte. J Chromatogr A. 1993;640:473–9.

    Article  CAS  Google Scholar 

  25. Lee YH, Lin TI. Determination of metal cations by capillary electrophoresis effect of background carrier and completing agents. J Chromatogr A. 1994;675:227–36.

    Article  CAS  Google Scholar 

  26. Shakulashvili N, Faller T. H. Engelhardt. Simultaneous determination of alkali, alkaline earth and transition metal ions by capillary electrophoresis with indirect UV detection. J Chromatogr A. 2000;895:205–12.

    Article  CAS  Google Scholar 

  27. Petr J, Gerstmann S, Frank H. Determination of some heavy metal cations in molten snow by transient isotachophoresis/capillary zone electrophoresis. J Sep Sci. 2006;29:2256–60.

    Article  CAS  Google Scholar 

  28. Lopez CE, Castro JM, Gonzalez V, et al. Determination of metal ions in algal solution samples by capillary electrophoresis. J Chromatogr Sci. 1998;36:352–6.

    Article  CAS  Google Scholar 

  29. Shi M, Gao Q, Feng J, Lu Y. Analysis of inorganic cations in honey by capillary zone electrophoresis with indirect UV detection. J Chromatogr Sci. 2012;50:547–52.

    Article  CAS  Google Scholar 

  30. Piovezan M, Costa ACO, Jager AV, de Oliveira MAL, Micke GA. Development of a fast capillary electrophoresis method to determine inorganic cations in biodiesel samples. Anal Chim Acta. 2010;673:200–5.

    Article  CAS  Google Scholar 

  31. Suarez-Luque S, Mato I, Huidobro JF, Simal-Lozano J. Rapid capillary zone electrophoresis method for the determination of metal cations in beverages. Talanta. 2006;68:1143–7.

    Article  CAS  Google Scholar 

  32. Chiari M. Enhancement of selectivity in capillary electrophoretic separations of metals and ligands through complex formation. J Chromatogr A. 1998;805:1–15.

    Article  CAS  Google Scholar 

  33. Quirino JP, Terabe S. Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography. Science. 1998;282:465–8.

    Article  CAS  Google Scholar 

  34. Isoo K, Terabe S. Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis. Anal Chem. 2003;75:6789–98.

    Article  CAS  Google Scholar 

  35. Cocke DL, Schennach R, Yu Z. The surface properties of tetradecyltrimethylammonium bromide observed by capillary electrophoresis. J Chromatogr Sci. 2002;40:187–90.

    Article  CAS  Google Scholar 

  36. Harakuwe AH, Haddad PR. Manipulation of separation selectivity in capillary zone electrophoresis of anionic solutes. Trends Analyt Chem. 2001;20:375–85.

    Article  CAS  Google Scholar 

  37. Harakuwe AH, Haddad PR, Buchberger W. Optimisation of separation selectivity in capillary zone electrophoresis of inorganic anions using binary cationic surfactant mixtures. J Chromatogr A. 1994;685:161–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Ministry of Science and Technology of Taiwan (MOST 105-2113-M-037-014) and the partial support of the Kaohsiung Medical University “Aim for the Top Universities Grant” (No. KMU-TP104PR05) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Ling Chen.

Ethics declarations

This study did not involve research on human participants or animals.

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KL., Jiang, SJ. & Chen, YL. Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis. Anal Bioanal Chem 409, 2461–2469 (2017). https://doi.org/10.1007/s00216-017-0193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0193-1

Keywords

Navigation