Skip to main content
Log in

Use of a glycosylation site database to improve glycopeptide identification from complex mixtures

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

New mass spectrometry instrumentation, particularly those with electron transfer dissociation fragmentation, has made the analysis of complex glycopeptide mixtures accessible. However, software tools need to be optimized for interpretation of this type of data. Glycopeptide identification is challenging due to the number of different peptide and sugar moieties that can be combined, leading to a large number of potential compositions to consider. In this manuscript, different strategies for reducing the number of peptides and glycopeptides considered in database searching are compared. Adaptation of the software Protein Prospector to support the use of a reference modification site database doubled the number of glycopeptide IDs. The potential of this as an improved analysis strategy is discussed.

This manuscript compares the use of a restricted protein database based on a list of accession numbers of identified proteins to the use of a modification site database for intact glycopeptide analysis. It was found that the modification database is more effective for glycopeptide identification, particularly for larger glycopeptides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 2015;8:463–83.

    Article  CAS  Google Scholar 

  2. Vekey K, Ozohanics O, Toth E, Jeko A, Revesz A, Krenyacz J, et al. Fragmentation characteristics of glycopeptides. Int J Mass Spectrom. 2013;345–347:71–9.

    Article  Google Scholar 

  3. Medzihradszky KF, Kaasik K, Chalkley RJ. Characterizing sialic acid variants at the glycopeptide level. Anal Chem. 2015;87(5):3064–71.

    Article  CAS  Google Scholar 

  4. Zubarev RA. Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol. 2004;15(1):12–6.

    Article  CAS  Google Scholar 

  5. Coon JJ, Shabanowitz J, Hunt DF, Syka JE. Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom. 2005;16(6):880–2.

    Article  CAS  Google Scholar 

  6. Darula Z, Chalkley RJ, Baker P, Burlingame AL, Medzihradszky KF. Mass spectrometric analysis, automated identification and complete annotation of O-linked glycopeptides. Eur J Mass Spectrom. 2010;16(3):421–8.

    Article  CAS  Google Scholar 

  7. Medzihradszky KF, Kaasik K, Chalkley RJ. Tissue-specific glycosylation at the glycopeptide level. Mol Cell Proteomics. 2015;14(8):2103–10.

    Article  CAS  Google Scholar 

  8. Trinidad JC, Schoepfer R, Burlingame AL, Medzihradszky KF. N- and O-glycosylation in the murine synaptosome. Mol Cell Proteomics. 2013;12(12):3474–88.

    Article  CAS  Google Scholar 

  9. Yin X, Bern M, Xing Q, Ho J, Viner R, Mayr M. Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics. 2013;12(4):956–78.

    Article  CAS  Google Scholar 

  10. Xu SL, Medzihradszky KF, Wang ZY, Burlingame AL, Chalkley RJ. N-glycopeptide profiling in arabidopsis inflorescence. Mol Cell Proteomics. 2016;15(6):2048–54.

    Article  CAS  Google Scholar 

  11. Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame AL. In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol Cell Proteomics. 2008;7(12):2386–98.

    Article  CAS  Google Scholar 

  12. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2006;5(5):923–34.

    Article  CAS  Google Scholar 

  13. Baker PR, Trinidad JC, Chalkley RJ. Modification site localization scoring integrated into a search engine. Mol Cell Proteomics. 2011;10(7):M111 008078.

    Article  Google Scholar 

  14. Baker PR, Chalkley RJ. MS-Viewer: a web-based spectral viewer for proteomics results. Mol Cell Proteomics. 2014;13(5):1392–6.

    Article  CAS  Google Scholar 

  15. Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, et al. Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res. 2013;12(12):5791–800.

    Article  CAS  Google Scholar 

  16. Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods. 2011;8(11):977–82.

    Article  CAS  Google Scholar 

  17. Chalkley RJ, Clauser KR. Modification site localization scoring: strategies and performance. Mol Cell Proteomics. 2012;11(5):3–14.

    Article  CAS  Google Scholar 

  18. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2007; 35(Database issue): D193-7.

  19. Campbell MP, Packer NH. UniCarbKB: new database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations. Biochim Biophys Acta. 2016;1860(8):1669–75.

    Article  CAS  Google Scholar 

  20. Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K, Monde K, et al. High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol Cell Proteomics. 2005;4(12):1977–89.

    Article  CAS  Google Scholar 

  21. Chalkley RJ. When target-decoy false discovery rate estimations are inaccurate and how to spot instances. J Proteome Res. 2013;12(2):1062–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NIGMS grant 8P41GM103481 and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Chalkley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalkley, R.J., Baker, P.R. Use of a glycosylation site database to improve glycopeptide identification from complex mixtures. Anal Bioanal Chem 409, 571–577 (2017). https://doi.org/10.1007/s00216-016-9981-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9981-2

Keywords

Navigation