Skip to main content

Advertisement

Log in

Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) sensor for bisphenol A was proposed by using l-cysteine-functionalized multiwalled carbon nanotubes/gold nanocomposites-modified glassy carbon electrode (MWCNTs-Au/GCE) based on ECL of peroxydisulfate solution. The ECL behaviors of peroxydisulfate solution had been investigated at the chitosan/MWCNTs-Au/GCE, and bisphenol A was found to have quenching effects on the ECL of peroxydisulfate solution. Both Au nanoparticles (AuNPs) and multiwalled CNTs could promote the electron transfer and synergetically amplify the ECL signal of peroxydisulfate solution. Under the optimized conditions, the ECL signal intensity was linear with the concentration of bisphenol A in the concentration range between 0.25 and 100 μM (R = 0.9931) with a detection limit (S/N = 3) of 0.083 μM. The constructed ECL sensor has the advantages of simplicity, sensitivity, good selectivity, and reproducibility, exhibiting a great potential application in the determination of bisphenol A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sambe H, Hoshina K, Hosoya K, Haginaka J. Simultaneous determination of bisphenol A and its halogenated derivatives in river water by combination of isotope imprinting and liquid chromatography–mass spectrometry. J Chromatogr A. 2006;1134(1–2):16–23.

    Article  CAS  Google Scholar 

  2. Maia J, Cruz JM, Sendón R, Bustos J, Sanchez JJ, Paseiro P. Effect of detergents in the release of bisphenol A from polycarbonate baby bottles. Food Res Int. 2009;42(10):1410–4.

    Article  CAS  Google Scholar 

  3. Mutou Y, Ibuki Y, Terao Y, Kojima S, Goto R. Chemical change of chlorinated bisphenol A by ultraviolet irradiation and cytotoxicity of their products on Jurkat cells. Environ Toxicol Pharmacol. 2006;21(3):283–9.

    Article  CAS  Google Scholar 

  4. Sun P, Wu Y. An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sensors Actuators B Chem. 2013;178:113–8.

    Article  CAS  Google Scholar 

  5. Wu C, Cheng Q, Li L, Chen J, Wu K. Synergetic signal amplification of graphene-Fe2O3 hybrid and hexadecyltrimethylammonium bromide as an ultrasensitive detection platform for bisphenol A. Electrochim Acta. 2014;115:434–9.

    Article  CAS  Google Scholar 

  6. Mielke H, Gundert-Remy U. Bisphenol A levels in blood depend on age and exposure. Toxicol Lett. 2009;190(1):32–40.

    Article  CAS  Google Scholar 

  7. Kuo HW, Ding WH. Trace determination of bisphenol A and phytoestrogens in infant formula powders by gas chromatography–mass spectrometry. J Chromatogr A. 2004;1027(1–2):67–74.

    Article  CAS  Google Scholar 

  8. Chang CM, Chou CC, Lee MR. Determining leaching of bisphenol A from plastic containers by solid-phase microextraction and gas chromatography–mass spectrometry. Anal Chim Acta. 2005;539(1–2):41–7.

    Article  CAS  Google Scholar 

  9. Ou J, Hu L, Hu L, Li X, Zou H. Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography. Talanta. 2006;69(4):1001–6.

    Article  CAS  Google Scholar 

  10. Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B Biomed Sci Appl. 2000;749(1):17–23.

    Article  CAS  Google Scholar 

  11. Feng Y, Zhou Y, Zou Q, Wang J, Chen F, Gao Z. Preparation and characterization of bisphenol A-cationized bovine serum albumin. J Immunol Methods. 2009;340(2):138–43.

    Article  CAS  Google Scholar 

  12. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  13. Bruce D, Richter MM. Green electrochemiluminescence from ortho-metalated tris(2-phenylpyridine)iridium(III). Anal Chem. 2002;74(6):1340–2.

    Article  CAS  Google Scholar 

  14. Chen Y, Mao J, Liu C, Yuan H, Xiao D, Choi MMF. [Ru(dpp)3][(4-Clph)4B]2 nanoislands directly assembled on an ITO electrode surface and its electrogenerated chemiluminescence. Langmuir. 2009;25(2):1253–8.

    Article  CAS  Google Scholar 

  15. Zhang L, Fang YM, Wang RY, You LX, Fu NY, Chen GN, et al. Electrogenerated chemiluminescence of bis[4-(dimethylamino)phenyl]squaraine. Chem Commun. 2011;47(13):3855–7.

    Article  CAS  Google Scholar 

  16. Dai H, Wu X, Wang Y, Zhou W, Chen G. An electrochemiluminescent biosensor for vitamin C based on inhibition of luminol electrochemiluminescence on graphite/poly (methylmethacrylate) composite electrode. Electrochim Acta. 2008;53(16):5113–7.

    Article  CAS  Google Scholar 

  17. Piper DJE, Barbante GJ, Brack N, Pigram PJ, Hogan CF. Highly stable ECL active films formed by the electrografting of a diazotized ruthenium complex generated in situ from the amine. Langmuir. 2011;27(1):474–80.

    Article  CAS  Google Scholar 

  18. Cai X, Yan J, Chu H, Wu M, Tu Y. An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat. Sensors Actuators B Chem. 2010;143(2):655–9.

    Article  CAS  Google Scholar 

  19. Zhou M, Roovers J, Robertson GP, Grover CP. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal Chem. 2003;75(23):6708–17.

    Article  CAS  Google Scholar 

  20. Tian D, Duan C, Wang W, Li N, Zhang H, Cui H, et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta. 2009;78(2):399–404.

    Article  CAS  Google Scholar 

  21. Jie G, Liu B, Pan H, Zhu JJ, Chen HY. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem. 2007;79(15):5574–81.

    Article  CAS  Google Scholar 

  22. Niu H, Yuan R, Chai Y, Mao L, Yuan Y, Zhuo Y, et al. Electrochemiluminescence of peroxydisulfate enhanced by L-cysteine film for sensitive immunoassay. Biosens Bioelectron. 2011;26(7):3175–80.

    Article  CAS  Google Scholar 

  23. Gan X, Yuan R, Chai Y, Yuan Y, Cao Y, Liao Y, et al. 3,4,9,10-Perylenetetracarboxylic dianhydride functionalized graphene sheet as labels for ultrasensitive electrochemiluminescent detection of thrombin. Anal Chim Acta. 2012;726:67–72.

    Article  CAS  Google Scholar 

  24. Yao W, Wang L, Wang H, Zhang X. Cathodic electrochemiluminescence behavior of norfloxacin/peroxydisulfate system in purely aqueous solution. Electrochim Acta. 2008;54(2):733–7.

    Article  CAS  Google Scholar 

  25. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297(5582):787–92.

    Article  CAS  Google Scholar 

  26. Liang A, Liu Q, Wen G, Jiang Z. The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends Anal Chem. 2012;37:32–47.

    Article  CAS  Google Scholar 

  27. Chauhan N, Pundir CS. An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Anal Biochem. 2011;413(2):97–103.

    Article  CAS  Google Scholar 

  28. Miao CC, Zhang AM, Xu YN, Chen S, Ma FM, Huang CS, et al. An ultrasensitive electrochemiluminescence sensor for detecting diphenhydramine hydrochloride based on L-cysteine-functionalized multiwalled carbon nanotubes/gold nanoparticles nanocomposites. Sensors Actuators B Chem. 2015;213:5–11.

    Article  CAS  Google Scholar 

  29. Li Q, Li H, Du GF, Xu ZH. Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO electrode. J Hazard Mater. 2010;180(1–3):703–9.

    Article  CAS  Google Scholar 

  30. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, et al. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens Bioelectron. 2007;23(1):60–5.

    Article  CAS  Google Scholar 

  31. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, et al. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron. 2010;25(9):2003–8.

    Article  CAS  Google Scholar 

  32. Yuan D, Chen S, Zhang J, Wang H, Yuan R, Zhang W. An electrochemiluminescent sensor for phenolic compounds based on the inhibition of peroxydisulfate electrochemiluminescence. Sensors Actuators B Chem. 2013;185:417–23.

  33. Zhang JJ, Chen SH, Yuan R, Zhong X, Wu XP. An ultrasensitive electrochemiluminescent biosensor for the detection of concanavalin A based on poly(ethylenimine) reduced graphene oxide and hollow gold nanoparticles. Anal Bioanal Chem. 2015;407:447–53.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21373138, 81472001, 31400851), Shanghai Education Committee (15ZZ070), and International Joint Laboratory on Resource Chemistry (IJLRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengqin Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Zhang, A., Zhang, X. et al. Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A. Anal Bioanal Chem 408, 7173–7180 (2016). https://doi.org/10.1007/s00216-016-9746-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9746-y

Keywords

Navigation