Skip to main content
Log in

Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method.

Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dubowitz V, Pearse AG. Reciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle. Nature. 1960;185:701–2.

    Article  CAS  Google Scholar 

  2. Edström L, Kugelberg E. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry. 1968;31:424–33.

    Article  Google Scholar 

  3. Stein JM, Padikula HA. Histochemical classification of individual skeletal muscle fibers of the rat. Am J Anat. 1962;110:103–23.

    Article  CAS  Google Scholar 

  4. Brooke MH, Kaiser KK. Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem. 1970;18:670–2.

    Article  CAS  Google Scholar 

  5. Reggiani C, Bottinelli R, Stienen GJ. Sarcomeric myosin isoforms: fine tuning of a molecular motor. News Physiol Sci. 2000;15:26–33.

    CAS  Google Scholar 

  6. Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76.

    CAS  Google Scholar 

  7. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371–423.

    CAS  Google Scholar 

  8. Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol. 2010;588:353–64.

    Article  CAS  Google Scholar 

  9. Staron RS, Pette D. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibres. Histochemistry. 1986;86:19–23.

    Article  CAS  Google Scholar 

  10. McLoon LK, Park HN, Kim JH, Pedrosa-Domellöf F, Thompson LV. A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain colocalization. J Appl Physiol. 2011;111:1178–89.

    Article  CAS  Google Scholar 

  11. Stephenson GM. Hybrid skeletal muscle fibres: a rare or common phenomenon? Clin Exp Pharmacol Physiol. 2001;28:692–702.

    Article  CAS  Google Scholar 

  12. Harrison BC, Allen DL, Leinwand LA. IIb or not IIb? Regulation of myosin heavy chain gene expression in mice and men. Skelet Muscle. 2011;1:5.

    Article  CAS  Google Scholar 

  13. Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3:1645–87.

    Article  Google Scholar 

  14. Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52:503–13.

    Article  CAS  Google Scholar 

  15. Hegedus J, Putman CT, Tyreman N, Gordon T. Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol. 2008;586:3337–51.

    Article  CAS  Google Scholar 

  16. Dobrowolny G, Aucello M, Musarò A. Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle. 2011;1:3.

    Article  CAS  Google Scholar 

  17. Clarke NF. Congenital fiber-type disproportion. Semin Pediatr Neurol. 2011;18:264–71.

    Article  Google Scholar 

  18. Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 2013;125:3–18.

    Article  CAS  Google Scholar 

  19. Brooke MH, Kaiser KK. Three “myosin ATPase” systems. The nature of their pH liability and sulphydryl dependence. J Histochem Cytochem. 1970;18:670–2.

    Article  CAS  Google Scholar 

  20. Khan MA. Histochemical sub-types of three fibre-types of avian skeletal muscle. Histochemistry. 1976;50:9–16.

    Article  CAS  Google Scholar 

  21. Staron RS, Hikida RS. Histochemical, biochemical, and ultrastructural analyses of single human muscle fibers, with special reference to the C-fiber population. J Histochem Cytochem. 1982;40:563–8.

    Article  Google Scholar 

  22. Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989;10:197–205.

    Article  CAS  Google Scholar 

  23. Talmadge RJ, Roy RR. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol. 1993;75:2337–40.

    CAS  Google Scholar 

  24. Bamman MM, Clarke MS, Talmadge RJ, Feeback DL. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms. Electrophoresis. 1999;20:466–8.

    Article  CAS  Google Scholar 

  25. Blough ER, Rennie ER, Zhang F, Reiser PJ. Enhanced electrophoretic separation and resolution of myosin heavy chains in mammalian and avian skeletal muscles. Anal Biochem. 1996;233:31–5.

    Article  CAS  Google Scholar 

  26. Sant’Ana Pereira JA, Greaser M, Moss RL. Pulse electrophoresis of muscle myosin heavy chains in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 2001;291:229–36.

    Article  Google Scholar 

  27. Picard B, Barboiron C, Chadeyron D, Jurie C. Protocol for high-resolution electrophoresis separation of myosin heavy chain isoforms in bovine skeletal muscle. Electrophoresis. 2011;32:1804–6.

    Article  CAS  Google Scholar 

  28. Mizunoya W, Wakamatsu J, Tatsumi R, Ikeuchi Y. Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem. 2008;377:111–3.

    Article  CAS  Google Scholar 

  29. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2:806–19.

    Article  CAS  Google Scholar 

  30. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.

    Article  CAS  Google Scholar 

  31. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  CAS  Google Scholar 

  32. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264:1772–5.

    Article  CAS  Google Scholar 

  33. Ferri A, Nencini M, Casciati A, Cozzolino M, Angelini DF, Longone P, et al. Cell death in amyotrophic lateral sclerosis: interplay between neuronal and glial cells. FASEB J. 2004;18:1261–3.

    CAS  Google Scholar 

  34. Wong M, Martin LJ. Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet. 2010;19:2284–302.

    Article  CAS  Google Scholar 

  35. Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 2008;8:425–36.

    Article  CAS  Google Scholar 

  36. Pansarasa O, Rossi D, Berardinelli A, Cereda C. Amyotrophic lateral sclerosis and skeletal muscle: an update. Mol Neurobiol. 2014;49:984–90.

    Article  CAS  Google Scholar 

  37. Stella R, Massimino ML, Sandri M, Sorgato MC, Bertoli A. Cellular prion protein promotes regeneration of adult muscle tissue. Mol Cell Biol. 2010;30:4864–76.

    Article  CAS  Google Scholar 

  38. Massimino ML, Peggion C, Loro F, Stella R, Megighian A, Scorzeto M, et al. Age-dependent neuromuscular impairment in prion protein knock-out mice. Muscle Nerve. 2016;53:269–79.

    Article  CAS  Google Scholar 

  39. Switzer RC, Merril CR, Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979;98:231–7.

    Article  CAS  Google Scholar 

  40. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    Article  Google Scholar 

  41. Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods. 2005;35:265–73.

    Article  CAS  Google Scholar 

  42. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.

    Article  CAS  Google Scholar 

  43. Karlsson C, Malmström L, Aebersold R, Malmström J. Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes. Nat Commun. 2012;3:1301.

    Article  Google Scholar 

  44. Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods. 2010;7:43–6.

    Article  CAS  Google Scholar 

  45. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signalling networks. Proc Natl Acad Sci U S A. 2007;104:5860–5.

    Article  CAS  Google Scholar 

  46. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    Article  Google Scholar 

  47. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol. 2007;25:125–31.

    Article  CAS  Google Scholar 

  48. Holman SW, Sims PF, Eyers CE. The use of selected reaction monitoring in quantitative proteomics. Bioanalysis. 2012;4:1763–8.

    Article  CAS  Google Scholar 

  49. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, et al. Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep. 2015;16:387–95.

    Article  CAS  Google Scholar 

  50. Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 1993;118:1137–47.

    CAS  Google Scholar 

  51. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.

    Article  CAS  Google Scholar 

  52. Hegedus J, Putman CT, Gordon T. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2007;28:154–64.

    Article  CAS  Google Scholar 

  53. Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci. 2006;9:408–19.

    Article  CAS  Google Scholar 

  54. Saxena S, Roselli F, Singh K, Leptien K, Julien JP, Gros-Louis F, et al. Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron. 2013;80:80–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the AriSLA Foundation (project LoCaLS 2013 to A.B.) and the University of Padua (PRAT CPDA121988/12 to M.C.S. and PRAT CPDA158035/15 to A.B.). The authors thank Giorgio Arrigoni and Marta Murgia (Department of Biomedical Science, University of Padua) for helpful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Bertoli or Roberto Stella.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peggion, C., Massimino, M.L., Biancotto, G. et al. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem 409, 2143–2153 (2017). https://doi.org/10.1007/s00216-016-0160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0160-2

Keywords

Navigation