Skip to main content
Log in

Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Previous studies by our group have shown that Sb(V) is able to enter red blood cells in a dynamic process and is reduced to Sb(III) by glutathione. The present study aims to investigate a possible entry pathway for Sb(V) through the erythrocyte membrane. Applying fluorescence spectroscopy studies with Laurdan and diphenylhexatriene (DPH) probes, it was found that there was no interaction between Sb(V) and membrane lipids. By comparing the Sb(V) entry percentages through lipid vesicles and sealed erythrocyte membranes, it was found that Sb(V) required protein channels to pass through the membrane. The competitive inhibition results using HCO3 and Cl showed that the Sb(V) uptake rate through the membrane fell approximately 50–70 % until full inhibition was reached, which was possibly due to the inhibition of the anion exchanger 1 (AE1) channel. Finally, the fluorescence measurements with the 5-iodoacetamidofluorescein (5-IAF) probe showed that Sb(V) interacted with membrane protein SH groups during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones RD (1994) Survey of antimony workers—mortality 1961-1992. Occup Environ Med 51(11):772–776

    Article  CAS  Google Scholar 

  2. McCallum RI (2005) Occupational exposure to antimony compounds. J Environ Monit 7(12):1245–1250

    Article  CAS  Google Scholar 

  3. McCallum RI (1989) The industrial toxicology of antimony—the Henry, Ernestine lecture 1987. J R Coll Physicians Lond 23(1):28–32

    CAS  Google Scholar 

  4. Othmer K (2001) Encyclopedia of chemical technology 2001 CD-ROM. vol “Antimony and Antimony Alloys”

  5. Belzile N, Chen YW, Filella M (2011) Human exposure to antimony: I. sources and intake. Crit Rev Environ Sci Technol 41(14):1309–1373. doi:10.1080/10643381003608227

    Article  CAS  Google Scholar 

  6. von Uexkull O, Skerfving S, Doyle R, Braungart M (2005) Antimony in brake pads—a carcinogenic component? J Clean Prod 13(1):19–31. doi:10.1016/j.jclepro.2003.10.008

    Article  Google Scholar 

  7. Furuta N, Iijima A, Kambe A, Sakai K, Sato K (2005) Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J Environ Monit 7(12):1155–1161

    Article  CAS  Google Scholar 

  8. Gao Y, Nelson ED, Field MP, Ding Q, Li H, Sherrell RM, Gigliotti CL, Van Ry DA, Glenn TR, Eisenreich SJ (2002) Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York-New Jersey harbor estuary. Atmos Environ 36(6):1077–1086

    Article  CAS  Google Scholar 

  9. Hadjikakou SK, Ozturk II, Banti CN, Kourkoumelis N, Hadjiliadis N (2015) Recent advances on antimony(III/V) compounds with potential activity against tumor cells. J Inorg Biochem. doi:10.1016/j.jinorgbio.2015.06.006

    Google Scholar 

  10. Filella M, Belzile N, Chen YW (2013) Human exposure to antimony. IV. Contents in human blood. Crit Rev Environ Sci Technol 43(19):2071–2105. doi:10.1080/10643389.2013.790741

    Article  Google Scholar 

  11. Quiroz W, De Gregori I, Basilio P, Bravo M, Pinto M, Lobos MG (2009) Heavy weight vehicle traffic and its relationship with antimony content in human blood. J Environ Monit 11(5):1051–1055

    Article  CAS  Google Scholar 

  12. Quiroz W, Cortés M, Astudillo F, Bravo M, Cereceda F, Vidal V, Lobos MG (2013) Antimony speciation in road dust and urban particulate matter in Valparaiso, Chile: analytical and environmental considerations. Microchem J 110:266–272

    Article  CAS  Google Scholar 

  13. Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ Chem 6(2):95–105

    Article  CAS  Google Scholar 

  14. Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry. Earth Sci Rev 59(1–4):265–285

    Article  CAS  Google Scholar 

  15. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212. doi:10.1016/s0891-5849(01)00480-4

    Article  CAS  Google Scholar 

  16. López S, Aguilar L, Mercado L, Bravo M, Quiroz W (2015) Sb(V) reactivity with human blood components: redox effects. PLoS ONE 10 (1). doi:10.1371/journal.pone.0114796

  17. Quiroz W, Aguilar L, Barría M, Veneciano J, Martínez D, Bravo M, Lobos MG, Mercado L (2013) Sb(V) and Sb(III) distribution in human erythrocytes: speciation methodology and the influence of temperature, time and anticoagulants. Talanta 115(0):902–910. doi:10.1016/j.talanta.2013.06.052

    Article  CAS  Google Scholar 

  18. Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197(1):47–57. doi:10.1016/j.cbi.2012.02.001

    Article  CAS  Google Scholar 

  19. Zheng J, Ohata M, Furuta N (2000) Studies on the speciation of inorganic and organic antimony compounds in airborne particulate matter by HPLC-ICP-MS. Analyst 125(6):1025–1028

    Article  CAS  Google Scholar 

  20. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc 5(1):59–69. doi:10.1007/BF00718783

    Article  CAS  Google Scholar 

  21. Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100(1):119–130. doi:10.1016/0003-9861(63)90042-0

    Article  CAS  Google Scholar 

  22. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  23. Suwalsky M, Fierro P, Villena F, Aguilar LF, Sotomayor CP, Jemiola-Rzeminska M, Strzalka K, Gul-Hinc S, Ronowska A, Szutowicz A (2012) Human erythrocytes and neuroblastoma cells are in vitro affected by sodium orthovanadate. Biochim Biophys Acta Biomembr 1818(9):2260–2270. doi:10.1016/j.bbamem.2012.04.012

    Article  CAS  Google Scholar 

  24. Sanchez S, Tricerri M, Gunther G, Gratton E (2007) Laurdan generalized polarization: from cuvette to microscope. Mod Res Educ Top Microsc (Formatex) 2:1007–1014

    Google Scholar 

  25. Suwalsky M, Benites M, Villena F, Aguilar F, Sotomayor CP (1996) Interaction of 2,4-dichlorophenoxyacetic acid (2,4-D) with cell and model membranes. Biochim Biophys Acta Biomembr 1285(2):267–276. doi:10.1016/S0005-2736(96)00173-3

    Article  CAS  Google Scholar 

  26. Havenga MJ, Bosman GJ, Appelhans H, De Grip WJ (1994) Expression of the anion exchanger (AE) gene family in human brain. Identification of a new AE protein: AE0. Brain Res Mol Brain Res 25(1–2):97–104

    Article  CAS  Google Scholar 

  27. Tschan M, Robinson B, Schulin R (2008) Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ Geochem Health 30(2):187–191

    Article  CAS  Google Scholar 

  28. Yan S, Li F, Ding K, Sun H (2003) Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem 8(6):689–697. doi:10.1007/s00775-003-0468-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from FONDECYT (project 1150528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Quiroz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera, C., López, S., Aguilar, L. et al. Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches. Anal Bioanal Chem 408, 2937–2944 (2016). https://doi.org/10.1007/s00216-015-9188-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9188-y

Keywords

Navigation