Skip to main content
Log in

Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N+• adducts ([M + 55]+•) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C–C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55]+• precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

The diagnostic fragments in the APCI PQD MS2 spectrum of the [M + 55]+• adduct of triolein

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook 3 edn. CRC, Boca Raton

    Google Scholar 

  2. Holčapek M, Jandera P, Fischer J, Prokeš B (1999) Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A 858(1):13–31

    Article  Google Scholar 

  3. Fauconnot L, Hau J, Aeschlimann JM, Fay LB, Dionisi F (2004) Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 18(2):218–224. doi:10.1002/rcm.1317

    Article  CAS  Google Scholar 

  4. Cvačka J, Hovorka O, Jiroš P, Kindl J, Stránský K, Valterová I (2006) Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J Chromatogr A 1101(1–2):226–237. doi:10.1016/j.chroma.2005.10.001

    Article  Google Scholar 

  5. Sandra K, Pereira AD, Vanhoenacker G, David F, Sandra P (2010) Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1217(25):4087–4099. doi:10.1016/j.chroma.2010.02.039

    Article  CAS  Google Scholar 

  6. Laakso P, Voutilainen P (1996) Analysis of triacylglycerols by silver-ion high-performance liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. Lipids 31(12):1311–1322. doi:10.1007/bf02587918

    Article  CAS  Google Scholar 

  7. Lísa M, Velínská H, Holčapek M (2009) Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem 81(10):3903–3910. doi:10.1021/ac900150j

    Article  Google Scholar 

  8. Lísa M, Holčapek M (2013) Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem 85(3):1852–1859. doi:10.1021/ac303237a

    Article  Google Scholar 

  9. Dugo P, Kumm T, Crupi ML, Cotroneo A, Mondello L (2006) Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes. J Chromatogr A 1112(1–2):269–275. doi:10.1016/j.chroma.2005.10.070

    Article  CAS  Google Scholar 

  10. van der Klift EJC, Vivo-Truyols G, Claassen FW, van Holthoon FL, van Beek TA (2008) Comprehensive two-dimensional liquid chromatography with ultraviolet, evaporative light scattering and mass spectrometric detection of triacylglycerols in corn oil. J Chromatogr A 1178(1–2):43–55. doi:10.1016/j.chroma.2007.11.039

    Article  Google Scholar 

  11. Perrin JL, Naudet M (1983) Identification and determination of triglycerides in natural fats by high-performance liquid-chromatography. Revue Francaise Des Corps Gras 30(7–8):279–285

    CAS  Google Scholar 

  12. Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10(7):587–599. doi:10.1016/s1044-0305(99)00035-5

    Article  CAS  Google Scholar 

  13. Holčapek M, Jandera P, Zderadička P, Hrubá L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1010(2):195–215. doi:10.1016/s0021-9673(03)01030-6

    Article  Google Scholar 

  14. Han XL, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. doi:10.1194/jlr. R300004-JLR200

    Article  CAS  Google Scholar 

  15. Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36(4):327–346. doi:10.1007/s11745-001-0725-5

    Article  CAS  Google Scholar 

  16. Cai SS, Syage JA (2006) Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 78(4):1191–1199. doi:10.1021/ac0515834

    Article  CAS  Google Scholar 

  17. Asbury GR, Al-Saad K, Siems WF, Hannan RM, Hill HH (1999) Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom 10(10):983–991. doi:10.1016/s1044-0305(99)00063-x

    Article  CAS  Google Scholar 

  18. Pittenauer E, Allmaier G (2009) The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J Am Soc Mass Spectrom 20(6):1037–1047. doi:10.1016/j.jasms.2009.01.009

    Article  CAS  Google Scholar 

  19. Kofroňová E, Cvačka J, Vrkoslav V, Hanus R, Jiroš P, Kindl J, Hovorka O, Valterová I (2009) A comparison of HPLC/APCI-MS and MALDI-MS for characterising triacylglycerols in insects: species-specific composition of lipids in the fat bodies of bumblebee males. J Chromatogr B-Anal Technol Biomed Life Sci 877(30):3878–3884. doi:10.1016/j.jchromb.2009.09.040

    Article  Google Scholar 

  20. Suni NM, Aalto H, Kauppila TJ, Kotiaho T, Kostiainen R (2012) Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J Mass Spectrom 47(5):611–619. doi:10.1002/jms.2992

    Article  CAS  Google Scholar 

  21. Cheng CF, Gross ML (1998) Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70(20):4417–4426. doi:10.1021/ac9805192

    Article  CAS  Google Scholar 

  22. Lauer WM, Aasen AJ, Graff G, Holman RT (1970) Mass spectrometry of lipids. 5. Mass spectrometry of triglycerides. 1. Structural effects. Lipids 5(11):861–868. doi:10.1007/bf02531117

    Article  CAS  Google Scholar 

  23. Games DE (1978) Soft ionization mass-spectral methods for lipid analysis. Chem Phys Lipids 21(4):389–402. doi:10.1016/0009-3084(78)90048-8

    Article  CAS  Google Scholar 

  24. Thomas MC, Mitchell TW, Harman DG, Deeley JM, Murphy RC, Blanksby SJ (2007) Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal Chem 79(13):5013–5022. doi:10.1021/ac0702185

    Article  CAS  Google Scholar 

  25. Xu Y, Brenna JT (2007) Atmospheric pressure covalent adduct chemical ionization tandem mass spectrometry for double bond localization in monoene- and diene-containing triacylglycerols. Anal Chem 79(6):2525–2536. doi:10.1021/ac062055a

    Article  CAS  Google Scholar 

  26. Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ (2008) Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal Chem 80(1):303–311. doi:10.1021/ac7017684

    Article  CAS  Google Scholar 

  27. Hsu F-F, Turk J (2010) Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom 21(4):657–669. doi:10.1016/j.jasms.2010.01.007

    Article  CAS  Google Scholar 

  28. Brown SHJ, Mitchell TW, Blanksby SJ (2011) Analysis of unsaturated lipids by ozone-induced dissociation. Biochimt Biophys Acta-Mol Cell Biol Lipids 1811(11):807–817. doi:10.1016/j.bbalip.2011.04.015

    Article  CAS  Google Scholar 

  29. Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J (2011) Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal Chem 83(8):2978–2986. doi:10.1021/ac1030682

    Article  CAS  Google Scholar 

  30. Pham HT, Ly T, Trevitt AJ, Mitchell TW, Blanksby SJ (2012) Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal Chem 84(17):7525–7532. doi:10.1021/ac301652a

    Article  CAS  Google Scholar 

  31. Moneti G, Pieraccini G, Dani F, Turillazzi S, Favretto D, Traldi P (1997) Ion-molecule reactions of ionic species from acetonitrile with unsaturated hydrocarbons for the identification of the double-bond position using an ion trap. J Mass Spectrom 32(12):1371–1373. doi:10.1002/(sici)1096-9888(199712)32:12<1371::aid-jms588>3.0.co;2-e

    Article  Google Scholar 

  32. Moneti G, Pieraccini G, Favretto D, Traldi P (1998) Acetonitrile in chemical ionization of monounsaturated hydrocarbons: a C-13 and H-2 labeling study. J Mass Spectrom 33(11):1148–1149. doi:10.1002/(sici)1096-9888(1998110)33:11<1148::aid-jms707>3.0.co;2-y

    Article  Google Scholar 

  33. Moneti G, Pieraccini G, Favretto D, Traldi P (1999) Reactions of ionic species from acetonitrile with long-chain saturated and unsaturated alcohols. J Mass Spectrom 34(12):1354–1360. doi:10.1002/(sici)1096-9888(199912)34:12<1354::aid-jms894>3.0.co;2-1

    Article  CAS  Google Scholar 

  34. Oldham NJ, Svatoš A (1999) Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun Mass Spectrom 13(5):331–336. doi:10.1002/(sici)1097-0231(19990315)13:5<331::aid-rcm487>3.3.co;2-1

    Article  CAS  Google Scholar 

  35. Van Pelt CK, Carpenter BK, Brenna JT (1999) Studies of structure and mechanism in acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid methyl esters. J Am Soc Mass Spectrom 10(12):1253–1262

    Article  Google Scholar 

  36. Van Pelt CK, Brenna JT (1999) Acetonitrile chemical ionization tandem mass spectrometry to locate double bonds in polyunsaturated fatty acid methyl esters. Anal Chem 71(10):1981–1989. doi:10.1021/ac981387f

    Article  Google Scholar 

  37. Van Pelt CK, Huang MC, Tschanz CL, Brenna JT (1999) An octaene fatty acid, 4,7,10,13,16,19,22,25-octacosaoctaenoic acid (28: 8n−3), found in marine oils. J Lipid Res 40(8):1501–1505

    Google Scholar 

  38. Michaud AL, Diau GY, Abril R, Brenna JT (2002) Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal Biochem 307(2):348–360. doi:10.1016/s0003-2697(02)00037-4

    Article  CAS  Google Scholar 

  39. Michaud AL, Yurawecz MP, Delmonte P, Corl BA, Bauman DE, Brenna JT (2003) Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal Chem 75(18):4925–4930. doi:10.1021/ac034221+

    Article  CAS  Google Scholar 

  40. Michaud AL, Lawrence P, Adlof R, Brenna JT (2005) On the formation of conjugated linoleic acid diagnostic ions with acetonitrile chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 19(3):363–368. doi:10.1002/rcm.1797

    Article  CAS  Google Scholar 

  41. Lawrence P, Brenna JT (2006) Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters. Anal Chem 78(4):1312–1317. doi:10.1021/ac0516584

    Article  CAS  Google Scholar 

  42. Gomez-Cortes P, Tyburczy C, Brenna JT, Juarez M, Angel de la Fuente M (2009) Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res 50(12):2412–2420. doi:10.1194/jlr. M800662-JLR200

    Article  CAS  Google Scholar 

  43. Alves SP, Tyburczy C, Lawrence P, Bessa RJB, Brenna JT (2011) Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters. Rapid Commun Mass Spectrom 25(14):1933–1941. doi:10.1002/rcm.5065

    Article  CAS  Google Scholar 

  44. Oldham NJ (1999) Ion/molecule reactions provide new evidence for the structure and origin of C3H4N (+) from acetonitrile chemical ionization plasma. Rapid Commun Mass Spectrom 13(16):1694–1698. doi:10.1002/(sici)1097-0231(19990830)13:16<1694::aid-rcm702>3.0.co;2-1

    Article  CAS  Google Scholar 

  45. Vrkoslav V, Cvačka J (2012) Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1259:244–250. doi:10.1016/j.chroma.2012.04.055

    Article  CAS  Google Scholar 

  46. Šubčíková L, Hoskovec M, Vrkoslav V, Čmelíková T, Háková E, Míková R, Coufal P, Doležal A, Plavka R, Cvačka J (2015) Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1378:8–18. doi:10.1016/j.chroma.2014.11.075

    Article  Google Scholar 

  47. Lísa M, Holčapek M, Boháč M (2009) Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry data. J Agric Food Chem 57(15):6888–6898. doi:10.1021/jf901189u

    Article  Google Scholar 

  48. Liebisch G, Vizcaino JA, Koefeler H, Troetzmueller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54(6):1523–1530. doi:10.1194/jlr.M033506

    Article  CAS  Google Scholar 

  49. Rousseau D, Marangoni AG (2002) In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition, and biotechnology, 2nd edn. CRC, New York

    Google Scholar 

  50. Mottram HR, Evershed RP (1996) Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry. Tetrahedron Lett 37(47):8593–8596. doi:10.1016/0040-4039(96)01964-8

    Article  CAS  Google Scholar 

  51. Laakso P (2002) Mass spectrometry of triacylglycerols. Eur J Lipid Sci Technol 104(1):43–49. doi:10.1002/1438-9312(200201)104:1<43::AID-EJLT43>3.0.CO;2-J

    Article  CAS  Google Scholar 

  52. Baiocchi C, Medana C, Dal Bello F, Giancotti V, Aigotti R, Gastaldi D (2015) Analysis of regioisomers of polyunsaturated triacylglycerols in marine matrices by HPLC/HRMS. Food Chem 166:551–560. doi:10.1016/j.foodchem.2014.06.067

    Article  CAS  Google Scholar 

  53. Kofroňová E, Cvačka J, Jiroš P, Sýkora D, Valterová I (2009) Analysis of insect triacylglycerols using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Eur J Lipid Sci Technol 111:519–525. doi:10.1002/ejlt.200800228

    Article  Google Scholar 

  54. Cvačka J, Krafková E, Jiroš P, Valterová I (2006) Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. Rapid Commun Mass Spectrom 20(23):3586–3594. doi:10.1002/rcm.2770

    Article  Google Scholar 

  55. Rissmann R, Groenink HWW, Weerheim AM, Hoath SB, Ponec M, Bouwstra JA (2006) New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol 126(8):1823–1833. doi:10.1038/sj.jid.5700305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Czech Science Foundation (Project No. P206/12/0750), the Academy of Sciences of the Czech Republic (RVO 61388963) and Charles University in Prague (Project SVV). The authors thank Dr. Miroslav Lísa for advices with the randomization synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Cvačka.

Additional information

Published in the topical collection Lipidomics with guest editor Michal Holčapek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 24.6 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Háková, E., Vrkoslav, V., Míková, R. et al. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal Bioanal Chem 407, 5175–5188 (2015). https://doi.org/10.1007/s00216-015-8537-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8537-1

Keywords

Navigation