Skip to main content

Advertisement

Log in

Simultaneous determination of gonadotropin-inhibitory and gonadotropin-releasing hormones using ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gonadotropin-inhibitory hormones (GnIH) and gonadotropin-releasing hormones (GnRH) are neuropeptides essential for the regulation of reproduction in all vertebrate animals examined. Determination of neuropeptides in the biological sample is highly challenging due to their complex matrix and weak stability. The wide variety of peptides or protein degradation products often interferes with the determination of the target peptide. This study aims to develop a specific ultra-high performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of nine critical neuropeptides in biological samples. A separation method by ultra-performance liquid chromatography coupled to a multiple reaction monitoring (MRM) by tandem mass spectrometry allows the selective determination of the neuropeptides in brain and plasma matrices after solid-phase extraction. Specific MSMS transitions were optimized using MRM of multiple-charged peptides generated by electrospray ionization in positive mode. The resulting analytical method was fully validated with thorough evaluation of stability, recovery, matrix effect, and intra- and interday accuracy and precision in sea lamprey brain and plasma. The optimized method shows linearity in a wide range of concentrations with limit of quantification ranging from 0.1 to 0.75 ng/mL. With slight modification, this method can be applied to other biological samples.

Determination of GnRH and GnIH in sea lamprey brain and plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clarke IJ (2011) Control of GnRH secretion: one step back. Front Neuroendocrin 32:367–375

    Article  CAS  Google Scholar 

  2. Parhar I, Ogawa S, Kitahashi T (2012) RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 98:176–196

    Article  CAS  Google Scholar 

  3. Osugi T, Daukss D, Gazda K, Ubuka T, Kosugi T, Nozaki M, Sower SA, Tsutsui K (2012) Evolutionary origin of the structure and function of gonadotropin-inhibitory hormone: insights from lampreys. Endocrinology 153:2362–2374

    Article  CAS  Google Scholar 

  4. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SMJ, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson Y-W, Nanlohy KG, Libants SV, Yeh C-Y, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu B, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li W (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421

    Article  CAS  Google Scholar 

  5. The relationship between pulsatile GnRH secretion and cAMP production in immortalized GnRH neurons (2011), vol 300. vol 6

  6. Sower SA, Balz E, Aquilina-Beck A, Kavanaugh SI (2011) Seasonal changes of brain GnRH-I, -II, and -III during the final reproductive period in adult male and female sea lamprey. Gen Comp Endocrinol 170:276–282

    Article  CAS  Google Scholar 

  7. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies (2010), vol 299. vol 1

  8. Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS (2004) Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 89:534–543

    Article  CAS  Google Scholar 

  9. D’Eramo JL, Somoza GM, Stefano A, Canosa LF, Fridman O (1996) Rapid separation of gonadotropin-releasing hormone molecular forms by isocratic high-performance liquid chromatography on an ion-exchange column. J Chromatogr B 682:219–224

    Article  Google Scholar 

  10. Wen J, Davies N, Ledger R, Butt G, McLeod B, Tucker IG (2002) Isocratic liquid chromatographic assay for monitoring the degradation of luteinizing hormone releasing hormone by extracts from the gastrointestinal tract of possums. J Chromatogr B 779:221–227

    Article  CAS  Google Scholar 

  11. Sandberg M, Weber SG (2003) Techniques for neuropeptide determination. TrAC Trends Anal Chem 22:522–527

    Article  CAS  Google Scholar 

  12. Spindel E, Wurtmant RJ (1979) Reversed-phase, ion-pair separation of thyrotropin-releasing hormone and some analogs. J Chromatogr A 175:198–201

    Article  CAS  Google Scholar 

  13. Brudel M, Kertscher U, Berger H, Mehlis B (1994) Liquid chromatographic-mass spectrometric studies on the enzymatic degradation of gonadotropin-releasing hormone. J Chromatogr A 661:55–60

    Article  CAS  Google Scholar 

  14. Brudel M, Kertscher U, Schröder D, Melzig MF, Mehlis B (1995) Liquid chromatographic-mass spectrometric studies on the enzymatic degradation of β-endorphin by endothelial cells. J Chromatogr A 712:169–175

    Article  CAS  Google Scholar 

  15. Thomas A, Geyer H, Kamber M, Schanzer W, Thevis M (2008) Mass spectrometric determination of gonadotrophin-releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS. J Mass Spectrom 43:908–915

    Article  CAS  Google Scholar 

  16. Tamvakopoulos C (2007) Mass spectrometry for the quantification of bioactive peptides in biological fluids. Mass Spectrom Rev 26:389–402

    Article  CAS  Google Scholar 

  17. Osugi T, Ukena K, Sower SA, Kawauchi H, Tsutsui K (2006) Evolutionary origin and divergence of PQRFamide peptides and LPXRFamide peptides in the RFamide peptide family—insights from novel lamprey RFamide peptides. FEBS J 273:1731–1743

    Article  CAS  Google Scholar 

  18. Chambery A, Severino V, D’Aniello A, Parente A (2008) Precursor ion discovery on a hybrid quadrupole–time-of-flight mass spectrometer for gonadotropin-releasing hormone detection in complex biological mixtures. Anal Chem 374:335–345

    CAS  Google Scholar 

  19. Péter A, Devadder S, Laus G, Tourwé D (1996) Liquid chromatography studies on the enzymatic degradation of luteinizing hormone-releasing hormone analogues with off-line identification by mass spectrometry. J Chromatogr A 729:137–142

    Article  Google Scholar 

  20. Zhan Y, Chen X, Zhao X, Zhong D (2009) Rapid and sensitive liquid chromatography–tandem mass spectrometry method for the determination of leuprolide in human serum. J Chromatogr A 877:3194–3200

    CAS  Google Scholar 

  21. Niwa M, Enomoto K, Yamashita K (1999) Measurement of the novel decapeptide cetrorelix in human plasma and urine by liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr B 729:245–253

    Article  CAS  Google Scholar 

  22. Guzman NA (2000) Determination of immunoreactive gonadotropin-releasing hormone in serum and urine by on-line immunoaffinity capillary electrophoresis coupled to mass spectrometry. J Chromatogr B 749:197–213

    Article  CAS  Google Scholar 

  23. Holzgrabe U, Nap C-J, Almeling S (2011) Use of collision induced dissociation mass spectrometry as a rapid technique for the identification of pharmacologically active peptides in pharmacopoeial testing. J Pharm Biomed Anal 55:957–963

    Article  CAS  Google Scholar 

  24. Kafka AP, Rades T, McDowell A (2010) Rapid and specific high-performance liquid chromatography for the in vitro quantification of d-Lys6–GnRH in a microemulsion-type formulation in the presence of peptide oxidation products. Biomed Chromatogr 24:132–139

    Article  CAS  Google Scholar 

  25. Breci LA, Tabb DL, Yates JR, Wysocki VH (2003) Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem 75:1963–1971

    Article  CAS  Google Scholar 

  26. Kicman AT, Parkin MC, Iles RK (2007) An introduction to mass spectrometry based proteomics—detection and characterization of gonadotropins and related molecules. Mol Cell Endocrinol 260–262:212–227

    Article  Google Scholar 

  27. Fricker LD, Lim J, Pan H, Che F-Y (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344

    Article  CAS  Google Scholar 

  28. van den Broek I, Sparidans RW, Schellens JHM, Beijnen JH (2008) Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B 872:1–22

    Article  Google Scholar 

  29. Hatziieremia S, Kostomitsopoulos N, Balafas V, Tamvakopoulos C (2007) A liquid chromatographic/tandem mass spectroscopic method for quantification of the cyclic peptide melanotan-II. Plasma and brain tissue concentrations following administration in mice. Rapid Commun Mass Spectrom 21:2431–2438

    Article  CAS  Google Scholar 

  30. Cass RT, Villa JS, Karr DE, Schmidt DE (2001) Rapid bioanalysis of vancomycin in serum and urine by high-performance liquid chromatography tandem mass spectrometry using on-line sample extraction and parallel analytical columns. Rapid Commun Mass Spectrom 15:406–412

    Article  CAS  Google Scholar 

  31. Kobayashi N, Kanai M, Seta K, K-i N (1995) Quantitative analysis of synthetic human calcitonin by liquid chromatography-mass spectrometry. J Chromatogr B 672:17–23

    Article  CAS  Google Scholar 

  32. Chang D, Kolis SJ, Linderholm KH, Julian TF, Nachi R, Dzerk AM, Lin PP, Lee JW, Bansal SK (2005) Bioanalytical method development and validation for a large peptide HIV fusion inhibitor (Enfuvirtide, T-20) and its metabolite in human plasma using LC–MS/MS. J Pharm Biomed Anal 38:487–496

    Article  CAS  Google Scholar 

  33. Piehowski PD, Petyuk VA, Orton DJ, Xie F, Moore RJ, Ramirez-Restrepo M, Engel A, Lieberman AP, Albin RL, Camp DG, Smith RD, Myers AJ (2013) Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J Proteome Res 12:2128–2137

    Article  CAS  Google Scholar 

  34. Chambers EE, Legido-Quigley C, Smith N, Fountain KJ (2012) Development of a fast method for direct analysis of intact synthetic insulins in human plasma: the large peptide challenge. Bioanalysis 5:65–81

    Article  Google Scholar 

  35. Chambers EE, Lame ME, Bardsley J, Hannam S, Legido-Quigley C, Smith N, Fountain KJ, Collins E, Thomas E (2013) High sensitivity LC–MS/MS method for direct quantification of human parathyroid 1–34 (teriparatide) in human plasma. J Chromatogr B 938:96–104

    Article  CAS  Google Scholar 

  36. Wang H, Chung-Davidson YW, Li W (2014) Identification and quantification of sea lamprey gonadotropin-releasing hormones by electrospray ionization tandem mass spectrometry. J Chromatogr A 1345:98–106

    Article  CAS  Google Scholar 

  37. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  38. van Midwoud PM, Rieux L, Bischoff R, Verpoorte E, Niederländer HAG (2007) Improvement of recovery and repeatability in liquid chromatography–mass spectrometry analysis of peptides. J Proteome Res 6:781–791

    Article  Google Scholar 

  39. Chung-Davidson YW, Wang H, Siefkes MJ, Bryan MB, Wu H, Johnson NS, Li W (2013) Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey. BMC Neurosci 14:11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Daniel Jones and Lijun Chen of the Michigan State University MS Facility for helpful advice. This study was funded by a grant from the Great Lakes Fishery Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussy, U., Wang, H., Chung-Davidson, YW. et al. Simultaneous determination of gonadotropin-inhibitory and gonadotropin-releasing hormones using ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 407, 497–507 (2015). https://doi.org/10.1007/s00216-014-8214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8214-9

Keywords

Navigation