Skip to main content

Advertisement

Log in

Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Currently, there is no cure for Alzheimer’s disease and early diagnosis is very difficult, since no biomarkers have been established with the necessary reliability and specificity. For the discovery of new biomarkers, the application of omics is emerging, especially metabolomics based on the use of mass spectrometry. In this work, an analytical approach based on direct infusion electrospray mass spectrometry was applied for the first time to blood serum samples in order to elucidate discriminant metabolites. Complementary methodologies of extraction and mass spectrometry analysis were employed for comprehensive metabolic fingerprinting. Finally, the application of multivariate statistical tools allowed us to discriminate Alzheimer patients and healthy controls, and identify some compounds as potential markers of disease. This approach provided a global vision of disease, given that some important metabolic pathways could be studied, such as membrane destabilization processes, oxidative stress, hypometabolism, or neurotransmission alterations. Most remarkable results are the high levels of phospholipids containing saturated fatty acids, respectively, polyunsaturated ones and the high concentration of whole free fatty acids in Alzheimer’s serum samples. Thus, these results represent an interesting approximation to understand the pathogenesis of disease and the identification of potential biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AUC:

Area under the curve

Ch:

Choline

CV:

Coefficient of variation

DHA:

Docosahexaenoic acid

DIMS:

Direct infusion mass spectrometry

ESI:

Electrospray ionization

FC:

Fold change

FFA:

Free fatty acid

GPCh:

Glycerophosphocholine

HC:

Healthy control

LPC:

Lyso-phosphatidylcholine

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PC:

Phosphatidylcholine

PLS-DA:

Partial least squares discriminant analysis

PPC:

Choline plasmalogen

PPE:

Ethanolamine plasmalogen

PUFA:

Polyunsaturated fatty acid

ROC:

Receiving operating characteristic

SFA:

Saturated fatty acid

TG:

Triglyceride

VIP:

Variable importance in the projection

References

  1. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD (1995) Relative role of plaques and tangles in the dementia of Alzheimer disease: correlations using three sets of neuropathological criteria. Dementia 6:21–31

    CAS  Google Scholar 

  2. Migliore L, Fontana I, Colognato R, Coppede F, Siciliano G, Murri L (2005) Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol Aging 26:587–595

    Article  CAS  Google Scholar 

  3. Maruszak A, Żekanowski C (2011) Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 35:320–330

    Article  CAS  Google Scholar 

  4. González-Domínguez R, García-Barrera T, Gómez-Ariza JL (2014) Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics 6:292–300

    Article  Google Scholar 

  5. Mielke MM, Lyketsos CG (2006) Lipids and the pathogenesis of Alzheimer’s disease: is there a link? Int Rev Psychiatry 18:173–186

    Article  Google Scholar 

  6. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:189–199

    Article  CAS  Google Scholar 

  7. McKahnn G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    Article  Google Scholar 

  8. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol 6:734–746

    Article  Google Scholar 

  9. Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35:128–140

    Article  CAS  Google Scholar 

  10. Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113:2437–2468

    Article  CAS  Google Scholar 

  11. Kuehnbaum NL, Kormendi A, Britz-McKibbin P (2013) Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity. Anal Chem 85:10664–10669

    Article  CAS  Google Scholar 

  12. Huang MZ, Cheng SC, Cho YT, Shiea J (2011) Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta 702:1–15

    Article  CAS  Google Scholar 

  13. Draper J, Lloyd AJ, Goodacre R, Beckmann M (2013) Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics 9:S4–S29

    Article  Google Scholar 

  14. Oresic M, Hyötyläinen T, Herukka SK, Sysi-Aho M, Mattila I, Seppänan-Laakso T, Julkunen V, Gopalacharyulu PV, Hallikainen M, Koikkalainen J, Kivipelto M, Helisalmi S, Lötjönen J, Soininen H (2011) Metabolome in progression to Alzheimer’s disease. Transl Psychiatry 1:e57

    Article  CAS  Google Scholar 

  15. Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, Hampel H, Kastler J, Senn H (2012) Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS ONE 7:e31501

    Article  CAS  Google Scholar 

  16. Trushina E, Dutta T, Persson XMT, Mielke MM, Petersen RC (2013) Identification of altered betabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS ONE 8:e63644

    Article  CAS  Google Scholar 

  17. Ibánez C, Simó C, Barupal DK, Fiehn O, Kivipelto M, Cedazo-Mínguez A, Cifuentes A (2013) A new metabolomic workflow for early detection of Alzheimer’s disease. J Chromatogr A 1302:65–71

    Article  Google Scholar 

  18. Ibáñez C, Simó C, Martín-Álvarez PJ, Kivipelto M, Winblad B, Cedazo-Mínguez A, Cifuentes A (2012) Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis–mass spectrometry metabolomics. Anal Chem 84:8532–8540

    Article  Google Scholar 

  19. Lin S, Liu H, Kanawati B, Liu L, Dong J, Li M, Huang J, Schmitt-Kopplin P, Cai Z (2013) Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer’s disease in CRND8 mice. Anal Bioanal Chem 405:5105–5117

    Article  CAS  Google Scholar 

  20. Lin S, Kanawati B, Liu L, Witting M, Li M, Huang J, Schmitt-Kopplin P, Cai Z (2014) Ultra high resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. Talanta 118:45–53

    Article  CAS  Google Scholar 

  21. Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID (2006) A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131:1075–1078

    Article  CAS  Google Scholar 

  22. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  Google Scholar 

  23. Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299

    Article  CAS  Google Scholar 

  24. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  25. Wang C, Xie S, Yang J, Yang Q, Xu G (2004) Structural identification of human blood phospholipids using liquid chromatography/quadrupole-linear ion trap mass spectrometry. Anal Chim Acta 525:1–10

    Article  CAS  Google Scholar 

  26. Beckmann M, Parker D, Enot DP, Duval E, Draper J (2008) High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc 3:486–504

    Article  CAS  Google Scholar 

  27. Graham SF, Chevallier OP, Roberts D, Hölscher C, Elliott CT, Green BD (2013) Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85:1803–1811

    Article  CAS  Google Scholar 

  28. Graham SF, Holscher C, Green BD (2013) Metabolic signatures of human Alzheimer’s disease (AD): 1H NMR analysis of the polar metabolome of post-mortem brain tissue. Metabolomics in press

  29. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  Google Scholar 

  30. Greenberg N, Grassano A, Thambisetty M, Lovestone S, Legido-Quigley C (2009) A proposed metabolic strategy for monitoring disease progression in Alzheimer’s disease. Electrophoresis 30:1235–1239

    Article  CAS  Google Scholar 

  31. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M (2013) Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 34:2865–2872

    CAS  Google Scholar 

  32. Wang G, Zhou Y, Huang FJ, Tang HD, Xu XH, Liu JJ, Wang Y, Deng YL, Ren RJ, Xu W, Ma JF, Zhang YN, Zhao AH, Chen SD, Jia W (2014) Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J Proteome Res 13:2649–2658

    Article  CAS  Google Scholar 

  33. Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  CAS  Google Scholar 

  34. Weaver PJ, Laures AMF, Wolff JC (2007) Investigation of the advanced functionalities of a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 21:2415–2421

    Article  CAS  Google Scholar 

  35. Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A 89:1671–1675

    Article  CAS  Google Scholar 

  36. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063

    Article  CAS  Google Scholar 

  37. Kanfer JN, Pettegrew JW, Moossy J, McCartney DG (1993) Alterations of selected enzymes of phospholipid metabolism in Alzheimer’s disease brain tissue as compared to non-Alzheimer’s disease controls. Neurochem Res 18:331–334

    Article  CAS  Google Scholar 

  38. Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert M, Fassbender K, Schmitt A, Klein J (2004) Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 25:1299–1303

    Article  CAS  Google Scholar 

  39. Kosicek M, Kirsch S, Bene R, Trkanjec Z, Titlic M, Bindila L, Peter-Katalinic J, Hecimovic S (2010) Nano-HPLC–MS analysis of phospholipids in cerebrospinal fluid of Alzheimer’s disease patients—a pilot study. Anal Bioanal Chem 398:2929–2937

    Article  CAS  Google Scholar 

  40. Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain membrane phospholipid alterations in alzheimer’s disease. Neurochem Res 26:771–782

    Article  CAS  Google Scholar 

  41. Conquer JA, Tierneyc MC, Zecevica J, Bettgera WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35:1305–1312

    Article  CAS  Google Scholar 

  42. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, Nazar MD, Rich SA, Berlau DJ, Peltz CB, Tan MT, Kawas CH, Federoff HJ (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20:415–418

    Article  CAS  Google Scholar 

  43. Kyle DJ, Schaefer E, Patton G, Beiser A (1999) Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 34:S245

    Article  CAS  Google Scholar 

  44. Mulder C, Wahlund LO, Teerlink T, Blomberg M, Veerhuis R, van Kamp GJ, Scheltens P, Scheffer PG (2003) Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 110:949–955

    Article  CAS  Google Scholar 

  45. Ross M, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793

    Article  CAS  Google Scholar 

  46. Devore EE, Grodstein F, van Rooij FJA, Hofman A, Rosner B, Stampfer MJ, Witteman JC, Breteler MM (2009) Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am J Clin Nutr 90:170–176

    Article  CAS  Google Scholar 

  47. Gardiner M, Nilsson B, Rehncrona S, Siesjö BK (1981) Free fatty acids in the rat brain in moderate and severe hypoxia. J Neurochem 36:1500–1505

    Article  CAS  Google Scholar 

  48. Wilson DM, Bindert LI (1997) Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am J Pathol 150:2181–2195

    CAS  Google Scholar 

  49. Fraser T, Tayler H, Love S (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem Res 35:503–513

    Article  CAS  Google Scholar 

  50. Wang DC, Sun CH, Liu LY, Sun XH, Jin XW, Song WL, Liu XQ, Wan XL (2012) Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol Aging 33:1057–1066

    Article  CAS  Google Scholar 

  51. Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, Morris MC (2012) Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 29:691–697

    CAS  Google Scholar 

  52. Farooqui AA, Rapoport SI, Horrocks LA (1997) Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem Res 22:523–527

    Article  CAS  Google Scholar 

  53. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PWK, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL (2007) Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res 48:2485–2498

    Article  CAS  Google Scholar 

  54. Igarashi M, Ma M, Gao F, Kim HW, Rapoport SI, Rao JS (2011) Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer’s disease prefrontal cortex. J Alzheimers Dis 24:507–517

    CAS  Google Scholar 

  55. Martinez M, Mougan I (1998) Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71:2528–2533

    Article  CAS  Google Scholar 

  56. Sato Y, Nakamura T, Aoshima K, Oda Y (2010) Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry. Anal Chem 82:9858–9864

    Article  CAS  Google Scholar 

  57. Li N, Liu W, Li W, Li S, Chen X, Bi K, He P (2010) Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem 43:992–997

    Article  CAS  Google Scholar 

  58. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Aayley ACD (1992) Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing 21:91–94

    Article  CAS  Google Scholar 

  59. Kim TS, Pae CU, Yoon SJ, Jang WY, Lee NJ, Kim JJ, Lee SJ, Lee C, Paik IH, Lee CU (2006) Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 21:344–348

    Article  Google Scholar 

  60. Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW (2002) Identification of oxidized plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 293:1566–1570

    Article  CAS  Google Scholar 

  61. Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461

    Article  CAS  Google Scholar 

  62. Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52:562–565

    Article  CAS  Google Scholar 

  63. Mecocci P, Polidori C, Cherubini A, Chionne F, Cecchetti R, Senin U (1998) Oxidative damage to DNA lympocytes from AD patients. Neurology 51:1014–1017

    Article  CAS  Google Scholar 

  64. Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG (2007) Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects. Amino Acids 32:213–224

    Article  CAS  Google Scholar 

  65. Makar TK, Cooper AJL, Tofel-Grehl B, Thaler HT, Blass JP (1995) Carnitine, carnitine acetyltransferase, and glutathione in Alzheimer brain. Neurochem Res 20:705–711

    Article  CAS  Google Scholar 

  66. Bazan NG, Colangelo V, Lukiw WJ (2002) Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat 68–69:197–210

    Article  Google Scholar 

  67. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36:811–822

    Article  CAS  Google Scholar 

  68. Adhihetty PJ, Beal MF (2008) Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromol Med 10:275–290

    Article  CAS  Google Scholar 

  69. Rubio JC, de Bustos F, Molina JA, Jimenez-Jimenez FJ, Benito-Leon J, Martin MA, Campos Y, Ortí-Pareja M, Cabrera-Valdivia F, Arenas J (1998) Cerebrospinal fluid carnitine levels in patients with Alzheimer’s disease. J Neurol Sci 155:192–195

    Article  CAS  Google Scholar 

  70. Kása P, Rakonczay Z, Gulya K (1997) The cholinergic system in Alzheimer’s disease. Prog Neurobiol 52:511–535

    Article  Google Scholar 

  71. Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease—an in vivo 13C magnetic resonance spectroscopy study. MAGMA 16:29–42

    Article  CAS  Google Scholar 

  72. Rissman RA, De Blas AL, Armstrong DM (2007) GABA(A) receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292

    Article  CAS  Google Scholar 

  73. Chen C, Alder JT, Bowen DM, Esiri MM, McDonald B, Hope T, Jobst KA, Francis PT (1996) Presynaptic serotonergic markers in community-acquired cases of Alzheimer’s disease: correlations with depression and neuroleptic medication. Neurochemistry 66:1592–1598

    Article  CAS  Google Scholar 

  74. Storga D, Vrecko K, Birkmayer JGD, Reibnegger G (1996) Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci Lett 203:29–32

    Article  CAS  Google Scholar 

  75. Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson PC, Griffin JL (2010) A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 56:937–943

    Article  CAS  Google Scholar 

  76. Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8:26

    Article  CAS  Google Scholar 

  77. Burgess BL, McIsaac SA, Naus KE, Chan JY, Tansley GHK, Yang J, Miao F, Ross CJ, van Eck M, Hayden MR, van Nostrand W, St George-Hyslop P, Westaway D, Wellington CL (2006) Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer’s disease mouse models with abundant Aβ in plasma. Neurobiol Dis 24:114–127

    Article  CAS  Google Scholar 

  78. Fisher G, Lorenzo N, Abe H, Fujita E, Frey WH, Emory C, Di Fiore MM, D’ Aniello A (1998) Free D- and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects. Amino Acids 15:263–269

    Article  CAS  Google Scholar 

  79. Ravaglia G, Forti P, Maioli F, Bianchi G, Martelli M, Talerico T, Servadei L, Zoli M, Mariani E (2004) Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer disease. Am J Clin Nutr 80:483–488

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects CTM2012-38720-C03-01 from the Ministerio de Ciencia e Innovación and P008-FQM-3554 and P009-FQM-4659 from the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía). Raúl González Domínguez thanks the Ministerio de Educación for a predoctoral scholarship. The authors also thank to Dr. Alberto Blanco and Carlos Salgado from Hospital Juan Ramón Jiménez for providing serum samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. García-Barrera or J. L. Gómez-Ariza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Domínguez, R., García-Barrera, T. & Gómez-Ariza, J.L. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem 406, 7137–7148 (2014). https://doi.org/10.1007/s00216-014-8102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8102-3

Keywords

Navigation