Skip to main content
Log in

Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we describe the findings of a study aimed at assessing the detection sensitivity of comprehensive two-dimensional high-performance liquid chromatography (LCxLC) separation of a degraded active pharmaceutical ingredient (API) with UV absorption as the detection technique. Specifically, we have examined the impact of the volume and solvent composition (referred to as “interface conditions”) of fractions of first-dimension column effluent transferred to the second dimension for further separation on the ability to resolve and detect low-abundance compounds. Historically, LCxLC has been perceived as being inferior to 1D-LC from the point of view of detection sensitivity. In this work, we demonstrate that LCxLC is sufficiently sensitive to be useful in the pharmaceutical context where in general impurities present at 0.05 % (relative to the API concentration) should be quantified. Moreover, we find that this level of sensitivity is only attained under certain conditions: dilution of the first column effluent with weak solvent (water in this case) prior to injection into the second-dimension column is very beneficial because it promotes focusing of the analyte band in the second column, thereby improving the detection sensitivity of the LCxLC system; and, quantitation limits are also a strong function of peak location in the second-dimension separation window, where baseline disturbances near the dead time of the second column can limit reliable detection of low-abundance compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Potts LW, Carr PW (2013) Analysis of the temporal performance of one versus on-line comprehensive two-dimensional liquid chromatography. J Chromatogr A 1310:37–44. doi:10.1016/j.chroma.2013.07.102

    Article  CAS  Google Scholar 

  2. Guiochon G, Marchetti N, Mriziq K, Shalliker R (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189:109–168. doi:10.1016/j.chroma.2008.01.086

    Article  CAS  Google Scholar 

  3. Vivó-Truyols G, van der Wal S, Schoenmakers PJ (2010) Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first and second-dimensions: a Pareto-optimality approach. Anal Chem 82:8525–8536. doi:10.1021/ac101420f

    Article  Google Scholar 

  4. Davis JM, Stoll DR, Carr PW (2008) Effect of first-dimension under sampling on effective peak capacity in comprehensive two-dimensional separations. Anal Chem 80:461–473. doi:10.1021/ac071504j

    Article  CAS  Google Scholar 

  5. Horie K, Kimura H, Ikegami T, Iwatsuka A, Saad N, Fiehn O, Tanaka N (2007) Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC. Anal Chem 79:3764–3770. doi:10.1021/ac062002t

    Article  CAS  Google Scholar 

  6. Potts LW, Stoll DR, Li X, Carr PW (2010) The impact of sampling time on peak capacity and analysis speed in on-line comprehensive two-dimensional liquid chromatography. J Chromatogr A 1217:5700–5709. doi:10.1016/j.chroma.2010.07.009

    Article  CAS  Google Scholar 

  7. Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594. doi:10.1021/ac971184b

    Article  CAS  Google Scholar 

  8. Huang Y, Gu H, Filgueira M, Carr PW (2011) An experimental study of sampling time effects on the resolving power of on-line two-dimensional high performance liquid chromatography. J Chromatogr A 1218:2984–2994. doi:10.1016/j.chroma.2011.03.032

    Article  CAS  Google Scholar 

  9. Stoll DR, Wang X, Carr PW (2008) Comparison of the practical resolving power of one and two-dimensional high-performance liquid chromatography analysis of metabolomic samples. Anal Chem 80:268–278. doi:10.1021/ac701676b

    Article  CAS  Google Scholar 

  10. Gilar M, Fridrich J, Schure MR, Jaworski A (2012) Comparison of orthogonality estimation methods for the two-dimensional separations of peptides. Anal Chem 84:8722–8732. doi:10.1021/ac3020214

    Article  CAS  Google Scholar 

  11. Rutan SC, Davis JM, Carr PW (2011) Fractional coverage metrics based on ecological home range for calculation of the effective peak capacity in comprehensive two-dimensional separations. J Chromatogr A 1255:267–276. doi:10.1016/j.chroma.2011.12.061

    Article  Google Scholar 

  12. Al Bakain R, Rivals I, Sassiat P, Thiébaut D, Hennion M-C, Euvrard G, Vial J (2011) Comparison of different statistical approaches to evaluate the orthogonality of chromatographic separations: application to reverse phase systems. J Chromatogr A 1218:2963–2975. doi:10.1016/j.chroma.2011.03.031

    Article  CAS  Google Scholar 

  13. Schure M (2008) In: Schure M, Cohen S (eds) Multidimensional liquid chromatography: theory and applications in industrial chemistry and the life sciences, Wiley-Interscience, Hoboken

  14. Schure MR (1999) Limit of detection, dilution factors, and technique compatibility in multidimensional separations utilizing chromatography, capillary electrophoresis, and field-flow fractionation. Anal Chem 71:1645–1657. doi:10.1021/ac981128q

    Article  CAS  Google Scholar 

  15. Horváth K, Fairchild JN, Guiochon G (2009) Detection issues in two-dimensional on-line chromatography. J Chromatogr A 1216:7785–7792. doi:10.1016/j.chroma.2009.09.016

    Article  Google Scholar 

  16. (2006) International Conference on Harmonization (ICH) Guidelines Q3A (R2). Impurities in new drug substances. International Conference on Harmonization. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3A_R2/Step4/Q3A_R2__Guideline.pdf. Accessed 24 July 2014

  17. (2005) International Conference on Harmonization (ICH) Guidelines Q2(R1). Validation of analytical procedures: text and methodology. International Conference on Harmonization. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 24 July 2014

  18. Huidobro AL, Pruim P, Schoenmakers P, Barbas C (2008) Ultra rapid liquid chromatography as second dimension in a comprehensive two-dimensional method for the screening of pharmaceutical samples in stability and stress studies. J Chromatogr A 1190:182–190. doi:10.1016/j.chroma.2008.02.114

    Article  CAS  Google Scholar 

  19. Zhang K, Wang J, Tsang M, Wigman L, Chetwyn N (2013) Two-dimensional HPLC in pharmaceutical analysis. Am Pharm Rev

  20. Alexander AJ, Ma L (2009) Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual fused-core columns in the 2nd dimension. J Chromatogr A 1216:1338–1345. doi:10.1016/j.chroma.2008.12.063

    Article  CAS  Google Scholar 

  21. (1996) International Conference on Harmonization (ICH) Guidelines Q1B. Stability testing: photostability testing of new drug substances and products. International Conference on Harmonization. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073373.pdf. Accessed 24 July 2014.

  22. Filgueira MR, Huang Y, Witt K, Castells C, Carr PW (2011) Improving peak capacity in fast online comprehensive two-dimensional liquid chromatography with post-first-dimension flow splitting. Anal Chem 83:9531–9539. doi:10.1021/ac202317m

    Article  CAS  Google Scholar 

  23. Guiochon G, Colin H (1984) Narrow-bore and micro-bore columns in liquid chromatography. Microcolumn high perform, Liq. Chromatogr. Elsevier, Amsterdam, pp 6–9

    Google Scholar 

  24. Mills M, Maltas J, Johnlough W (1997) Assessment of injection volume limits when using on-column focusing with microbore liquid chromatography. J Chromatogr A 759:1–11. doi:10.1016/S0021-9673(96)00753-4

    Article  CAS  Google Scholar 

  25. Bakalyar SR, Phipps C, Spruce B, Olsen K (1997) Choosing sample volume to achieve maximum detection sensitivity and resolution with high-performance liquid chromatography columns of 1.0, 2.1 and 4.6 mm I.D. J Chromatogr A 762:167–185. doi:10.1016/S0021-9673(96)00851-5

    Article  CAS  Google Scholar 

  26. Layne J, Farcas T, Rustamov I, Ahmed F (2001) Volume-load capacity in fast-gradient liquid chromatography. J Chromatogr A 913:233–242. doi:10.1016/S0021-9673(00)01199-7

    Article  CAS  Google Scholar 

  27. Vukmanic D, Chiba M (1989) Effect of organic solvents in sample solutions and injection volumes on chromatographic peak profiles of analytes in reversed-phase high-performance liquid chromatography. J Chromatogr A 483:189–196. doi:10.1016/S0021-9673(01)93121-8

    Article  CAS  Google Scholar 

  28. Oda Y, Asakawa N, Kajima T, Yoshida Y, Sato T (1991) On-line determination and resolution of verapamil enantiomers by high-performance liquid chromatography with column switching. J Chromatogr A 541:411–418. doi:10.1016/S0021-9673(01)96013-3

    Article  CAS  Google Scholar 

  29. Groskreutz SR, Swenson MM, Secor LB, Stoll DR (2012) Selective comprehensive multi-dimensional separation for resolution enhancement in high performance liquid chromatography, part I—principles and instrumentation. J Chromatogr A 1228:31–40. doi:10.1016/j.chroma.2011.06.035

    Article  CAS  Google Scholar 

  30. Bedani F, Kok WT, Janssen H-G (2009) Optimal gradient operation in comprehensive liquid chromatography × liquid chromatography systems with limited orthogonality. Anal Chim Acta 654:77–84. doi:10.1016/j.aca.2009.06.042

    Article  CAS  Google Scholar 

  31. Groskreutz SR, Weber SG (2014) Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography. J Chromatogr A. doi:10.1016/j.chroma.2014.05.056arial

    Google Scholar 

  32. Eghbali H, Sandra K, Tienpont B, Eeltink S, Sandra P, Desmet G (2012) Exploring the possibilities of cryogenic cooling in liquid chromatography for biological applications: a proof of principle. Anal Chem 84:2031–2037. doi: 10.1021/ac203252u

  33. Verstraeten M, Pursch M, Eckerle P, Luong J, Desmet G (2011) Thermal modulation for multidimensional liquid chromatography separations using low-thermal-mass liquid chromatography (LC). Anal Chem 83:7053–7060. doi:10.1021/ac201207t

    Article  CAS  Google Scholar 

  34. Verstraeten M, Pursch M, Eckerle P, Luong J, Desmet G (2011) Modelling the thermal behaviour of the low-thermal mass liquid chromatography system. J Chromatogr A 1218:2252–2263. doi:10.1016/j.chroma.2011.02.023

    Article  CAS  Google Scholar 

  35. Cao L, Yu D, Wang X, Ke Y, Jin Y, Liang X (2011) The development of an evaluation method for capture columns used in two-dimensional liquid chromatography. Anal Chim Acta 706:184–190. doi:10.1016/j.aca.2011.08.009

    Article  CAS  Google Scholar 

  36. Yamamoto E, Niijima J, Asakawa N (2013) Selective determination of potential impurities in an active pharmaceutical ingredient using HPLC-SPE-HPLC. J Pharm Biomed Anal 84:41–47. doi:10.1016/j.jpba.2013.05.033

    Article  CAS  Google Scholar 

  37. Stoll DR, Groskreutz SR (2013) Theory and practice of two-dimensional liquid chromatography separations involving the HILIC mode of separation. Hydrophilic Interact. Chromatogr. Guide Pract. Wiley, pp 265–305

  38. Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168:3–43. doi:10.1016/j.chroma.2007.08.054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.T. was supported by a gift from Agilent Technologies University Relations. D.S. was supported by a grant from the National Science Foundation (CHE-1213364) and a gift from Agilent Technologies University Relations. The 1290 Infinity 2D-LC system and HPLC columns used in this work were provided by Agilent Technologies. The LC Image software used to produce the LCxLC chromatograms shown here was provided by GC Image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwight R. Stoll.

Additional information

Published in the topical collection Multidimensional Chromatography with guest editors Torsten C. Schmidt, Oliver J. Schmitz, and Thorsten Teutenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoll, D.R., Talus, E.S., Harmes, D.C. et al. Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants. Anal Bioanal Chem 407, 265–277 (2015). https://doi.org/10.1007/s00216-014-8036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8036-9

Keywords

Navigation