Skip to main content
Log in

Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Off-line analytical pyrolysis combined with gas chromatography–mass spectroscopy (GC–MS), directly or after trimethylsilylation, along with infrared spectroscopy and amino acid analysis was applied for the first time to the characterization of the intra-skeletal organic matrix (OM) extracted from four Mediterranean hard corals. They were diverse in growth form and trophic strategy namely Balanophyllia europaea and Leptopsammia pruvoti—solitary corals, only the first having zooxanthelle—and Cladocora caespitosa and Astroides calycularis—colonial corals, only the first with zooxanthelle. Pyrolysis products evolved from OM could be assigned to lipid (e.g. fatty acids, fatty alcohols, monoacylglicerols), protein (e.g. 2,5-diketopiperazines, DKPs) and polysaccharide (e.g. anhydrosugars) precursors. Their quantitative distribution showed for all the species a low protein content with respect to lipids and polysaccharides. A chemometric approach using principal component analysis (PCA) and clustering analysis was applied on OM mean amino acidic compositions. The small compositional diversity across coral species was tentatively related with coral growth form. The presence of N-acetyl glucosamine markers suggested a functional link with other calcified tissues containing chitin. The protein fraction was further investigated using novel DKP markers tentatively identified from analytical pyrolysis of model polar linear dipeptides. Again, no correlation was observed in relation to coral ecology. These analytical results revealed that the bulk structure and composition of OMs among studied corals are similar, as it is the textural organization of the skeleton mineralized units. Therefore, they suggest that coral’s biomineralization is governed by similar macromolecules, and probably mechanisms, independently from their ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  2. Addadi L, Joester D, Nudelman F, Weiner S (2006) Chem Eur J 12:981–987

    Article  Google Scholar 

  3. Weiner S, Addadi L (2011) Annu Rev Mater Res 41:21–40

    Article  CAS  Google Scholar 

  4. Falini G, Fermani S (2013) Cryst Res Technol 48:864–876

    Article  CAS  Google Scholar 

  5. Marin F, Le Roy N, Marie B (2012) Front Biosci 4:1099–1125

    Article  Google Scholar 

  6. Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cleon I, Guichard N, Marin F (2013) FEBS J 280:214–232

    Article  CAS  Google Scholar 

  7. Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG (2013) Proc Natl Acad Sci U S A 110:2147–2148

    Article  Google Scholar 

  8. Tambutté S, Holcomb SM, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) J Exp Mar Biol Ecol 408:58–78, and references therein

    Article  Google Scholar 

  9. Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, Levy O, Dubinsky Z, Falini G (2011) PLoS ONE 6:e22338

    Article  CAS  Google Scholar 

  10. Falini G, Reggi M, Fermani S, Sparla F, Goffredo S, Dubinsky Z, Levi O, Dauphin Y, Cuif JP (2013) J Struct Biol 183:226–238

    Article  CAS  Google Scholar 

  11. Mass T, Drake JL, Haramaty L, Kim JD, Zelzion E, Bhattacharya D, Falkowski PG (2013) Curr Biol 23:1126–1131

    Article  CAS  Google Scholar 

  12. Mann K, Wilt FH, Poustka AJ (2010) Proteome Sci 8:33

    Article  Google Scholar 

  13. Voorhees KJ, Basile F, Beverly MB, Abbas-Hawks C, Hendricker A, Cody RB, Hadfield TL (1997) J Anal Appl Pyrol 40–41:111–134

    Article  Google Scholar 

  14. Prasad S, Schmidt H, Lampen P, Wang M, Güth R, Rao JV, Smith GB, Eiceman GA (2006) Analyst 131:1216–1225

    Article  CAS  Google Scholar 

  15. Schwarzinger C (2005) J Anal Appl Pyrol 74:26–32

    Article  CAS  Google Scholar 

  16. Furuhashi T, Schwarzinger C, Miksik I, Smrz M, Beran A (2009) Comp Biochem Phys B 154:351–371

    Article  Google Scholar 

  17. Furuhashi T, Beran A, Blazso M, Czegeny Z, Schwarzinger C (2009) Biosci Biotechnol Biochem 73:93–103

    Article  CAS  Google Scholar 

  18. Adamiano A, Bonacchi S, Calonghi N, Fabbri D, Falini G, Fermani S, Genovese D, Kralj D, Montalti M, Džakula N, Prodi L, Sartor G (2012) Chem Eur J 18:14367–14374

    Article  CAS  Google Scholar 

  19. NíFhlaithearta S, Ernst SR, Nierop KGJ, de Lange GJ, Reichart GJ (2013) Mar Micropaleontol 102:69–78

    Article  Google Scholar 

  20. Johnstone RAW, Povall TJ (1975) JCS Perkin I, pp:1297–1300

  21. Adamiano A, Fabbri D, Falini G, Belcastro MG (2013) J Anal Appl Pyrol 100:173–180

    Article  CAS  Google Scholar 

  22. Stankiewicz BA, Mastalerz M, Hof CHJ, Bierstedt A, Flannery MB, Briggs DEG, Evershed RP (1998) Org Geochem 28:67–76

    Article  CAS  Google Scholar 

  23. Chiavari G, Galletti G (1992) J Anal Appl Pyrol 24:123–137

    Article  CAS  Google Scholar 

  24. Fabbri D, Adamiano A, Falini G, Mancini I, De Marco R (2012) J Anal Appl Pyrol 95:145–155

    Article  CAS  Google Scholar 

  25. Templier J, Gallois N, Derenne S (2013) J Anal Appl Pyrol. doi:10.1016/j.jaap.2013.09.017

    Google Scholar 

  26. Sciutto G, Oliveri P, Prati S, Quaranta M, Lanteri S, Mazzeo R (2013) Anal Bioanal Chem 405:625–633

    Article  CAS  Google Scholar 

  27. Xu Y, Cheung W, Winder CL (2010) Anal Bioanal Chem 397:2439–2449

    Article  CAS  Google Scholar 

  28. Lu Y, Harrington PB (2010) Anal Bioanal Chem 397:2959–2966

    Article  CAS  Google Scholar 

  29. Torri C, Lesci IG, Fabbri D (2009) J Anal Appl Pyrol 85:192–196

    Article  CAS  Google Scholar 

  30. Alén R, Kuoppala E, Oesch P (1996) J Anal Appl Pyrol 36:137–148

    Article  Google Scholar 

  31. Fabbri D, Prati S, Vassura I, Chiavari G (2003) J Anal Appl Pyrolysis 68–69:163–171

    Article  Google Scholar 

  32. Abelenda MS, Buurman P, Arbestain MC, Kaal J, Martinez-Cortizas A, Gartzia-Bengoetxea N, Macías F (2011) Eur J Soil Sci 62:834–848

    Article  CAS  Google Scholar 

  33. Cao JP, Zhao XY, Morishita K, Wei XY, Takarada T (2010) Bioresour Technol 101:7648–7652

    Article  CAS  Google Scholar 

  34. Schlotzhauer WS, Chortyk OT, Austin PR (1976) J Agric Food Chem 24(1):177–180

    Article  CAS  Google Scholar 

  35. Ratcliff MA Jr, Medley EE, Simmonds PG (1974) J Org Chem 39:1481–1490

    Article  CAS  Google Scholar 

  36. Sharma RK, Chan WG, Wang J, Waymack BE, Wooten JB, Seeman JI, Hajaligol MR (2004) J Anal Appl Pyrol 72:153–163

    Article  CAS  Google Scholar 

  37. Schulten HR (1999) J Anal Appl Pyrol 49:385–415

    Article  CAS  Google Scholar 

  38. Räisänen U, Pitkänen I, Halttunen H, Hurtta M (2003) J Therm Anal Calorim 72:481–488

    Article  Google Scholar 

  39. Fabbri D, Torri C, Baravelli V (2007) J Anal Appl Pyrol 80:24–29

    Article  CAS  Google Scholar 

  40. Gelencsér A, Mészáros T, Blazsó M, Kiss GY, Krivácsy Z, Molnár A, Mészáros E (2000) J Atmos Chem 37:173–183

    Article  Google Scholar 

  41. Casol A, Mirti P, Palla G (1995) Fresenius J Anal Chem 352:372–379

    Article  Google Scholar 

  42. Al-Moghrabi S, Allemand D, Couret JM, Jaubertal J (1995) J Comp Physiol B 165:183–192

    Article  Google Scholar 

  43. Yamashiro H, Hirosuke O, Higa H, Chinen I, Sakai K (1999) Comp Biochem Phys B 122:397–407

    Article  Google Scholar 

  44. Stankiewicz BA, Briggs DEG, Evershed RP, Flannery MB, Wuttke M (1997) Science 276:1541–1543

    Article  CAS  Google Scholar 

  45. Schulten HR, Sorge-Lewin C, Schnitzer M (1997) Biol Fertil Soils 24:249–254

    Article  CAS  Google Scholar 

  46. Richmond-Aylor A, Bell S, Callery P, Morris K (2007) J Forensic Sci 52:380–382

    Article  CAS  Google Scholar 

  47. Smith GG, Reddy GS, Boon JJ (1988) J Chem Soc Perkin Trans II:203–211

    Article  Google Scholar 

  48. Fischer PM (2003) J Pept Sci 9:9–35

    Article  CAS  Google Scholar 

  49. Imbs AB (2013) Russ J Mar Biol 39:153–168

    Article  CAS  Google Scholar 

  50. Torri C, Soragni E, Prati S, Fabbri D (2013) Microchem J 110:719–725

    Article  CAS  Google Scholar 

  51. Gautret P, Cruit JP, Freiwald A (1997) FACIES 36:189–194

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [249930–CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea]. We deeply thank Gianni Neto for the coral underwater pictures. GF and SF thank the Consorzio Interuniversitario di Ricerca della Chimica dei Metalli nei Sistemi Biologici (CIRC MSB) for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniele Fabbri or Giuseppe Falini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamiano, A., Goffredo, S., Dubinsky, Z. et al. Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals. Anal Bioanal Chem 406, 6021–6033 (2014). https://doi.org/10.1007/s00216-014-7995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7995-1

Keywords

Navigation