Skip to main content
Log in

Graphene-based sensors for detection of heavy metals in water: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Graphene (G) is attracting significant attention because of its unique physical and electronic properties. The production of graphene through the reduction of graphene oxide (GO) is a low-cost method. The reduction of GO can further lead to electrically conductive reduced GO. These graphene-based nanomaterials are attractive for high-performance water sensors due to their unique properties, such as high specific surface areas, high electron mobilities, and exceptionally low electronic noise. Because of potential risks to the environment and human health arising from heavy-metal pollution in water, G-/GO-based water sensors are being developed for rapid and sensitive detection of heavy-metal ions. In this review, a general introduction to graphene and GO properties, as well as their syntheses, is provided. Recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are then highlighted. Finally, challenges facing G/GO-based water sensor development and outlook for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency (2007) Framework for metals risk assessment. EPA 120/R-07/001. Office of the Science Advisor, Risk Assessment Forum, Washington, D.C.

  2. Aragay G, Pons J, Merkoci A (2011) Recent trends in Macro-, Micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458

    CAS  Google Scholar 

  3. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    CAS  Google Scholar 

  4. Eden Morales-Narváez, Briza Pérez-López, Arben Merkoçi (2012) Graphene nanoscience: from Dirac physics to applications. Keynote lecture, GRANADA’12, Granada, Spain, 9–13

  5. Zhao J, Zhang GY, Shi DX (2013) Review of graphene-based strain sensors. Chin Phys B 22(5):057701

    Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  7. Jacoby M (2010) Nobel prize in physics. Chem Eng News Arch 88(41):8

    CAS  Google Scholar 

  8. Sun ZZ, James DK, Tour JM (2011) Graphene chemistry: synthesis and manipulation. J Phys Chem Lett 2(19):2425–2432

    CAS  Google Scholar 

  9. Yao Y, Chen XD, Guo HH, Wu ZQ (2011) Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl Surf Sci 257(17):7778–7782

    CAS  Google Scholar 

  10. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  Google Scholar 

  11. Fitzer E, Kochling KH, Boehm HP, Marsh H (1995) Recommended terminology for the description of carbon as a solid—(Iupac Recommendations 1995). Pure Appl Chem 67(3):473–506

    Google Scholar 

  12. Salas EC, Sun ZZ, Luttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8):4852–4856

    CAS  Google Scholar 

  13. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    CAS  Google Scholar 

  14. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398

    CAS  Google Scholar 

  15. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    CAS  Google Scholar 

  16. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13(20):9187–9193

    CAS  Google Scholar 

  17. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    CAS  Google Scholar 

  18. Cote LJ, Cruz-Silva R, Huang JX (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131(31):11027–11032

    CAS  Google Scholar 

  19. Quinlan RA, Javier A, Foos EE, Buckley L, Zhu MY, Hou K, Widenkvist E, Drees M, Jansson U, Holloway BC (2011) Transfer of carbon nanosheet films to nongrowth, zero thermal budget substrates. J Vac Sci Technol B 29(3):030602

    Google Scholar 

  20. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    CAS  Google Scholar 

  21. Bao QL, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    CAS  Google Scholar 

  22. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC Trends Anal Chem 39:87–113

    CAS  Google Scholar 

  23. Hong S, Myung S (2007) Nanotube electronics—a flexible approach to mobility. Nat Nanotechnol 2(4):207–208

    CAS  Google Scholar 

  24. Sridhar V, Kim HJ, Jung JH, Lee C, Park S, Oh IK (2012) Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance. ACS Nano 6(12):10562–10570

    CAS  Google Scholar 

  25. Chen SS, Wu QZ, Mishra C, Kang JY, Zhang HJ, Cho KJ, Cai WW, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11(3):203–207

    CAS  Google Scholar 

  26. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    CAS  Google Scholar 

  27. Hwang J, Kim DS, Ahn D, Hwang SW (2009) Transport properties of a DNA-conjugated single-wall carbon nanotube field-effect transistor. Jpn J Appl Phys 48(6):06FD08

    Google Scholar 

  28. Chen J, Bi H, Sun SR, Tang YF, Zhao W, Lin TQ, Wan DY, Huang FQ, Zhou XD, Xie XM, Jiang MH (2013) Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. ACS Appl Mater Interfaces 5(4):1408–1413

    CAS  Google Scholar 

  29. Layek RK, Kuila A, Chatterjee DP, Nandi AK (2013) Amphiphilic poly(N-vinyl pyrrolidone) grafted graphene by reversible addition and fragmentation polymerization and the reinforcement of poly(vinyl acetate) films. J Mater Chem A 1(36):10863–10874

    CAS  Google Scholar 

  30. Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7(6):1643–1648

    CAS  Google Scholar 

  31. Joshi RK, Gomez H, Alvi F, Kumar A (2010) Graphene films and ribbons for sensing of O−2, and 100 ppm of CO and NO2 in practical conditions. J Phys Chem C 114(14):6610–6613

    CAS  Google Scholar 

  32. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    CAS  Google Scholar 

  33. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State 35(1):52–71

    CAS  Google Scholar 

  34. Srinivasan C, Saraswathi R (2012) Growing high-quality graphene from incredible solid materials. Curr Sci India 102(1):17–18

    Google Scholar 

  35. Yu XZ, Hwang CG, Jozwiak CM, Kohl A, Schmid AK, Lanzara A (2011) New synthesis method for the growth of epitaxial graphene. J Electron Spectrosc 184(3–6):100–106

    CAS  Google Scholar 

  36. Lu XK, Yu MF, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3):269–272

    CAS  Google Scholar 

  37. Salvatierra RV, Domingues SH, Oliveira MM, Zarbin AJG (2013) Tri-layer graphene films produced by mechanochemical exfoliation of graphite. Carbon 57:410–415

    CAS  Google Scholar 

  38. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    CAS  Google Scholar 

  39. Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20(21):6592–6594

    CAS  Google Scholar 

  40. Wang B, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26(1):31–35

    Google Scholar 

  41. Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    CAS  Google Scholar 

  42. Huang B, Li ZY, Liu ZR, Zhou G, Hao SG, Wu J, Gu BL, Duan WH (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112(35):13442–13446

    CAS  Google Scholar 

  43. Zhu SJ, Tang SJ, Zhang JH, Yang B (2012) Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun 48(38):4527–4539

    CAS  Google Scholar 

  44. Chen Y, Qian J, Liu XY, Zhuang QX, Han ZW (2013) Synthesis and photoluminescence properties of polybenzoxazoles containing perylenebisimide functionalized graphene nanosheets via stacking interactions. New J Chem 37(8):2500–2508

    CAS  Google Scholar 

  45. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    CAS  Google Scholar 

  46. Luo ZT, Vora PM, Mele EJ, Johnson ATC, Kikkawa JM (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94(11):111909

    Google Scholar 

  47. Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743

    CAS  Google Scholar 

  48. Shang JZ, Ma L, Li JW, Ai W, Yu T, Gurzadyan GG (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792

    Google Scholar 

  49. Koos M, Veres M, Fule M, Pocsik I (2002) Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon. Diam Relat Mater 11(1):53–58

    CAS  Google Scholar 

  50. Zhou JG, Booker C, Li RY, Zhou XT, Sham TK, Sun XL, Ding ZF (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129(4):744–745

    CAS  Google Scholar 

  51. Loh KP, Bao QL, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    CAS  Google Scholar 

  52. Mei QS, Zhang K, Guan GJ, Liu BH, Wang SH, Zhang ZP (2010) Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem Commun 46(39):7319–7321

    CAS  Google Scholar 

  53. Chandrasoma A, Hamid AAA, Bruce AE, Bruce MRM, Tripp CP (2012) An infrared spectroscopic based method for mercury(II) detection in aqueous solutions. Anal Chim Acta 728:57–63

    CAS  Google Scholar 

  54. Wilson D, del Valle M, Alegret S, Valderrama C, Florido A (2012) Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes. Talanta 93:285–292

    Google Scholar 

  55. Bingol H, Kocabas E, Zor E, Coskun A (2010) A novel benzothiazole based azocalix[4]arene as a highly selective chromogenic chemosensor for Hg2+ ion: a rapid test application in aqueous environment. Talanta 82(4):1538–1542

    CAS  Google Scholar 

  56. Fu XL, Lou TT, Chen ZP, Lin M, Feng WW, Chen LX (2012) “Turn-on” fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. ACS Appl Mater Interfaces 4(2):1080–1086

    CAS  Google Scholar 

  57. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed 49(33):5708–5711

    CAS  Google Scholar 

  58. Huang XY, Lan T, Zhang BC, Ren JC (2012) Gold nanoparticle-enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Analyst 137(16):3659–3666

    CAS  Google Scholar 

  59. Kundu A, Layek RK, Kuila A, Nandi AK (2012) Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl Mater Interfaces 4(10):5576–5582

    CAS  Google Scholar 

  60. Davydov SY (2013) On the specific features of the density of states of epitaxial graphene formed on metal and semiconductor substrates. Semiconductors 47(1):95–104

    CAS  Google Scholar 

  61. Sun JT, Huang H, Wong SL, Gao HJ, Feng YP, Wee ATS (2012) Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction. Phys Rev Lett 109(24):246804

    Google Scholar 

  62. Sako R, Tsuchiya H, Ogawa M (2011) Influence of band-gap opening on ballistic electron transport in bilayer graphene and graphene nanoribbon FETs. IEEE Trans Electron Dev 58(10):3300–3306

    CAS  Google Scholar 

  63. Chance RR, Prock A, Silbey R (2007) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys. John Wiley & Sons, Inc. pp. 1–65

  64. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127(9):3115–3119

    CAS  Google Scholar 

  65. Li M, Zhou XJ, Guo SW, Wu NQ (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74

    CAS  Google Scholar 

  66. Morales-Narvaez E, Perez-Lopez B, Pires LB, Merkoci A (2012) Simple Forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 50(8):2987–2993

    CAS  Google Scholar 

  67. Kim J, Cote LJ, Kim F, Huang JX (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    CAS  Google Scholar 

  68. Wang YB, Kurunthu D, Scott GW, Bardeen CJ (2010) Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide. J Phys Chem C 114(9):4153–4159

    CAS  Google Scholar 

  69. Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan WH, Shen GL, Yu RQ (2011) Graphene-DNAzyme based biosensor for amplified fluorescence “Turn-On” detection of Pb2+ with a high selectivity. Anal Chem 83(13):5062–5066

    CAS  Google Scholar 

  70. Wen YQ, Xing FF, He SJ, Song SP, Wang LH, Long YT, Li D, Fan CH (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598

    CAS  Google Scholar 

  71. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, Lim TS, Tzeng YK, Fang CY, Han CC, Chang HC, Fann W (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3(5):284–288

    CAS  Google Scholar 

  72. Wu SX, He QY, Tan CL, Wang YD, Zhang H (2013) Graphene-based electrochemical sensors. Small 9(8):1160–1172

    CAS  Google Scholar 

  73. Zhou N, Chen H, Li JH, Chen LX (2013) Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta 180(5–6):493–499

    CAS  Google Scholar 

  74. Tang FJ, Zhang F, Jin QH, Zhao JL (2013) Determination of trace cadmium and lead in water based on graphene-modified platinum electrode sensor. Chin J Anal Chem 41(2):278–282

    CAS  Google Scholar 

  75. Zhang W, Wei J, Zhu HJ, Zhang K, Ma F, Mei QS, Zhang ZP, Wang SH (2012) Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(II) based on anodic stripping voltammetry. J Mater Chem 22(42):22631–22636

    CAS  Google Scholar 

  76. Ceken B, Kandaz M, Koca A (2012) Electrochemical metal-ion sensors based on a novel manganese phthalocyanine complex. Synth Met 162(17–18):1524–1530

    CAS  Google Scholar 

  77. Chow E, Gooding JJ (2006) Peptide modified electrodes as electrochemical metal ion sensors. Electroanalysis 18(15):1437–1448

    CAS  Google Scholar 

  78. Gebbink RJMK, Klink SI, Feiters MC, Nolte RJM (2000) “Crowned” Fe4S4 clusters as electrochemical metal ion sensors. Eur J Inorg Chem 2000(2):253–264

  79. Manivannan A, Seehra MS, Tryk DA, Fujishima A (2002) Electrochemical detection of ionic mercury at boron-doped diamond electrodes. Anal Lett 35(2):355–368

    CAS  Google Scholar 

  80. Abollino O, Giacomino A, Malandrino M, Piscionieri G, Mentasti E (2008) Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis 20(1):75–83

    CAS  Google Scholar 

  81. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    CAS  Google Scholar 

  82. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1–2):1–19

    CAS  Google Scholar 

  83. Wang S, Ang PK, Wang ZQ, Tang ALL, Thong JTL, Loh KP (2010) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10(1):92–98

    CAS  Google Scholar 

  84. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965

    CAS  Google Scholar 

  85. Gong JM, Zhou T, Song DD, Zhang LZ (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensor Actuat B Chem 150(2):491–497

    CAS  Google Scholar 

  86. Li ZJ, Xia QF (2012) Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry. Rev Anal Chem 31(1):57–81

    Google Scholar 

  87. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135(11):2768–2778

    CAS  Google Scholar 

  88. Liu S, Tian JQ, Wang L, Sun XP (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10):3158–3164

    CAS  Google Scholar 

  89. Feng HB, Cheng R, Zhao X, Duan XF, Li JH (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539

    Google Scholar 

  90. Li J, Guo SJ, Zhai YM, Wang EK (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649(2):196–201

    CAS  Google Scholar 

  91. Iwai Y, Hiroki A, Tamada M, Yamanishi T (2008) Radiation deterioration in mechanical properties and ion exchange capacity of Nafion N117 swelling in water. J Membr Sci 322(1):249–255

    CAS  Google Scholar 

  92. Schrenk MJ, Villigram RE, Torrence NJ, Brancato SJ, Minteer SD (2002) Effects of mixture casting Nafion (R) with quaternary ammonium bromide salts on the ion-exchange capacity and mass transport in the membranes. J Membr Sci 205(1–2):3–10

    CAS  Google Scholar 

  93. Chen TY, Leddy J (2000) Ion exchange capacity of nafion and nafion composites. Langmuir 16(6):2866–2871

    CAS  Google Scholar 

  94. Willemse CM, Tlhomelang K, Jahed N, Baker PG, Iwuoha EI (2011) Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors 11(4):3970–3987

    CAS  Google Scholar 

  95. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    CAS  Google Scholar 

  96. Liu JB, Fu SH, Yuan B, Li YL, Deng ZX (2010) Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132(21):7279–7281

    CAS  Google Scholar 

  97. World Health Organization, 2008. Guidelines for drinking-water quality, 3rd Ed. incorporating the first and second addenda, Vol. 1, Recommendations. Silver, pp. 434–435. Geneva, Switzerland

  98. Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116(1):1034–1041

    CAS  Google Scholar 

  99. Liu L, Wang CY, Wang GX (2013) Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters. Anal Methods 5(20):5812–5822

    CAS  Google Scholar 

  100. Devadas B, Rajkumar M, Chen SM, Saraswathi R (2012) Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetomol. Int J Electrochem Sci 7(4):3339–3349

    Google Scholar 

  101. Wang ZJ, Zhang J, Chen P, Zhou XZ, Yang YL, Wu SX, Niu L, Han Y, Wang LH, Chen P, Boey F, Zhang QC, Liedberg B, Zhang H (2011) Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 26(9):3881–3886

    CAS  Google Scholar 

  102. Yang SL, Xu BF, Zhang JQ, Huang XD, Ye J, Yu CZ (2010) Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes: tunable electrode dimension and potential electrochemical applications. J Phys Chem C 114(10):4389–4393

    CAS  Google Scholar 

  103. Gao XPA, Zheng GF, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett 10(2):547–552

    CAS  Google Scholar 

  104. Ishikawa FN, Curreli M, Chang HK, Chen PC, Zhang R, Cote RJ, Thompson ME, Zhou CW (2009) A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3(12):3969–3976

    CAS  Google Scholar 

  105. Forzani ES, Li XL, Zhang PM, Tao NJ, Zhang R, Amlani I, Tsui R, Nagahara LA (2006) Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small 2(11):1283–1291

    CAS  Google Scholar 

  106. Luo LB, Jie JS, Zhang WF, He ZB, Wang JX, Yuan GD, Zhang WJ, Wu LCM, Lee ST (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94(19):193101

    Google Scholar 

  107. Zhou JY, Barbara P, Paranjape M (2010) Novel in-situ decoration of single-walled carbon nanotube transistors with metal nanoparticles. J Nanosci Nanotechnol 10(6):3890–3894

    CAS  Google Scholar 

  108. Sudibya HG, He QY, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994

    CAS  Google Scholar 

  109. Li BR, Chen CW, Yang WL, Lin TY, Pan CY, Chen YT (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259

    CAS  Google Scholar 

  110. Kim JP, Lee BY, Lee J, Hong S, Sim SJ (2009) Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron 24(11):3372–3378

    CAS  Google Scholar 

  111. Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC Trends Anal Chem 47:27–36

    CAS  Google Scholar 

  112. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2012) Tri-n-butyltin binding to a low-affinity site decreases the F1FO-ATPase sensitivity to oligomycin in mussel mitochondria. Appl Organomet Chem 26(11):593–599

    CAS  Google Scholar 

  113. Wojcikiewicz RJH, Luo SG (1998) Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol 53(4):656–662

    CAS  Google Scholar 

  114. Wen YQ, Li FBY, Dong XC, Zhang J, Xiong QH, Chen P (2013) The electrical detection of lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv Healthc Mater 2(2):271–274

    CAS  Google Scholar 

  115. Syahir A, Kajikawa K, Mihara H (2012) Sensitive detection of small molecule-protein interactions on a metal-insulator-metal label-free biosensing platform. Chem Asian J 7(8):1867–1874

    CAS  Google Scholar 

  116. Chua JH, Chee RE, Agarwal A, Wong SM, Zhang GJ (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81(15):6266–6271

    CAS  Google Scholar 

  117. Chen KH, Lu GH, Chang JB, Mao S, Yu KH, Cui SM, Chen JH (2012) Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal Chem 84(9):4057–4062

    CAS  Google Scholar 

  118. Majumdar K, Murali KVRM, Bhat N, Lin YM (2010) External bias dependent direct to indirect band gap transition in graphene nanoribbon. Nano Lett 10(8):2857–2862

    CAS  Google Scholar 

  119. Nguyen VH, Nguyen MC, Nguyen HV, Dollfus P (2013) Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures. J Appl Phys 113(1):013702

    Google Scholar 

  120. Zeng ZY, Huang X, Yin ZY, Li H, Chen Y, Li H, Zhang Q, Ma J, Boey F, Zhang H (2012) Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv Mater 24(30):4138–4142

    CAS  Google Scholar 

  121. Seol G, Kumar B, Guo J (2012) Performance projection of graphene nanomesh and nanoroad transistors. Nano Res 5(3):164–171

    CAS  Google Scholar 

  122. Bai JW, Zhong X, Jiang S, Huang Y, Duan XF (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194

    CAS  Google Scholar 

  123. Miyazaki H, Tsukagoshi K, Kanda A, Otani M, Okada S (2010) Influence of disorder on conductance in bilayer graphene under perpendicular electric field. Nano Lett 10(10):3888–3892

    CAS  Google Scholar 

  124. Diez-Perez I, Li ZH, Hihath J, Li JH, Zhang CY, Yang XM, Zang L, Dai YJ, Feng XL, Muellen K, Tao NJ (2010) Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat Commun 1:31

    Google Scholar 

  125. National Sanitation Foundation, Contaminant Guide for Drinking Water (2011) Ann Arbor, Michigan http://www.nsforg/consumer/drinking_water/dw_contaminant_guideasp

Download references

Acknowledgments

Financial support for this work was provided by the U.S. National Science Foundation (IIP-1128158) and University of Wisconsin-Milwaukee Research Foundation Bradley Catalyst Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen.

Additional information

Published in the topical collection Chemosensors and Chemoreception with guest editors Jong-Heun Lee and Hyung-Gi Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Zhou, G., Christensen, E.R. et al. Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406, 3957–3975 (2014). https://doi.org/10.1007/s00216-014-7804-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7804-x

Keywords

Navigation