Skip to main content
Log in

On-chip processing of particles and cells via multilaminar flow streams

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The processing of particles, cells, and droplets for reactions, analyses, labeling, and coating is an important aspect of many microfluidic workflows. However, performing multi-step processes is typically a laborious and time-consuming endeavor. By exploiting the laminar nature of flow within microchannels, such procedures can benefit in terms of both speed and simplicity. This can be achieved either by manipulating the flow streams around the objects of interest, particularly for the localized perfusion of cells, or by manipulating the objects themselves within the streams via a range of forces. Here, we review the variety of methods that have been employed for performing such “multilaminar flow” procedures on particles, cells, and droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Velve-Casquillas G, Le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47

    CAS  Google Scholar 

  2. Mu X, Zheng WF, Sun JS, Zhang W, Jiang XY (2013) Microfluidics for manipulating cells. Small 9(1):9–21

    CAS  Google Scholar 

  3. Lim CT, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22(7):1197–1204

    CAS  Google Scholar 

  4. Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3(4):60N–68N

    CAS  Google Scholar 

  5. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210

    CAS  Google Scholar 

  6. Ong S-E, Zhang S, Du H, Fu Y (2008) Fundamental principles and applications of microfluidic systems. Front Biosci 13(7):2757–2773

    CAS  Google Scholar 

  7. Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices microfluidics. Top Curr Chem 304:27–68

    CAS  Google Scholar 

  8. Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287

    CAS  Google Scholar 

  9. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437(7059):648–655

    CAS  Google Scholar 

  10. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sensors Actuators A 58(1):13–18

    CAS  Google Scholar 

  11. Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Commun 47(23):6512–6535

    CAS  Google Scholar 

  12. Wiles C, Watts P (2012) Continuous flow reactors: a perspective. Green Chem 14(1):38–54

    CAS  Google Scholar 

  13. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71(23):5340–5347

    CAS  Google Scholar 

  14. Hatch A, Kamholz AE, Hawkins KR, Munson MS, Schilling EA, Weigl BH, Yager P (2001) A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19(5):461–465

    CAS  Google Scholar 

  15. Hatch A, Garcia E, Yager P (2004) Diffusion-based analysis of molecular interactions in microfluidic devices. Proc IEEE 92(1):126–139

    CAS  Google Scholar 

  16. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85

    CAS  Google Scholar 

  17. Kenis PJA, Ismagilov RF, Takayama S, Whitesides GM, Li SL, White HS (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33(12):841–847

    CAS  Google Scholar 

  18. Takayama S, Ostuni E, Qian XP, McDonald JC, Jiang XY, LeDuc P, Wu MH, Ingber DE, Whitesides GM (2001) Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries. Adv Mater 13(8):570–574

    CAS  Google Scholar 

  19. Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291(5506):1023–1026

    CAS  Google Scholar 

  20. Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM (1999) Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci U S A 96(10):5545–5548

    CAS  Google Scholar 

  21. Frampton JP, Lai D, Sriram H, Takayama S (2011) Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed Microdevices 13(6):1043–1051

    CAS  Google Scholar 

  22. Bransky A, Korin N, Levenberg S (2008) Experimental and theoretical study of selective protein deposition using focused micro laminar flows. Biomed Microdevices 10(3):421–428

    Google Scholar 

  23. Tarn MD, Pamme N (2011) Microfluidic platforms for performing surface-based clinical assays. Expert Rev Mol Diagn 11(7):711–720

    CAS  Google Scholar 

  24. Nilsson J, Evander M, Hammarstrom B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157

    CAS  Google Scholar 

  25. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    CAS  Google Scholar 

  26. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13

    CAS  Google Scholar 

  27. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217

    CAS  Google Scholar 

  28. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    CAS  Google Scholar 

  29. Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36(1):92–103

    Google Scholar 

  30. Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76(17):2376–2378

    CAS  Google Scholar 

  31. Peyman SA, Patel H, Belli N, Iles A, Pamme N (2009) A microfluidic system for performing fast, sequential biochemical procedures on the surface of mobile magnetic particles in continuous flow. Magnetohydrodynamics 45(3):361–370

    Google Scholar 

  32. Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117

    CAS  Google Scholar 

  33. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows: subcellular positioning of small molecules. Nature 411(6841):1016–1016

    CAS  Google Scholar 

  34. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130

    CAS  Google Scholar 

  35. Sawano A, Takayama S, Matsuda M, Miyawaki A (2002) Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev Cell 3(2):245–257

    CAS  Google Scholar 

  36. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138

    CAS  Google Scholar 

  37. Lucchetta EM, Munson MS, Ismagilov RF (2006) Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip 6(2):185–190

    CAS  Google Scholar 

  38. Lucchetta EM, Carthew RW, Ismagilov RF (2009) The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One 4(10):e7576

    Google Scholar 

  39. Nie F-Q, Yamada M, Kobayashi J, Yamato M, Kikuchi A, Okano T (2007) On-chip cell migration assay using microfluidic channels. Biomaterials 28(27):4017–4022

    CAS  Google Scholar 

  40. van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I (2010) A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol Heart Circ Physiol 298(2):H719–H725

    Google Scholar 

  41. Villa-Diaz LG, Torisawa Y-S, Uchida T, Ding J, Nogueira-de-Souza NC, O'Shea KS, Takayama S, Smith GD (2009) Microfluidic culture of single human embryonic stem cell colonies. Lab Chip 9(12):1749–1755

    CAS  Google Scholar 

  42. Li L, Nie Y, Shi X, Wu H, Ye D, Chen H (2011) Partial transfection of cells using laminar flows in microchannels. Biomicrofluidics 5(3):036503

    Google Scholar 

  43. Liu Y, Butler WB, Pappas D (2012) Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system. Anal Chim Acta 743:125–130

    CAS  Google Scholar 

  44. Lee CY, Romanova EV, Sweedler JV (2013) Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. J Neural Eng 10(3):036020

    Google Scholar 

  45. Lee SW, Yamamoto T, Noji H, Fujii T (2006) Chemical delivery microsystem for single-molecule analysis using multilaminar continuous flow. Enzym Microb Technol 39(3):519–525

    CAS  Google Scholar 

  46. Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105(20):7165–7170

    CAS  Google Scholar 

  47. Sinclair J, Pihl J, Olofsson J, Karlsson M, Jardemark K, Chiu DT, Orwar O (2002) A cell-based bar code reader for high-throughput screening of ion channel–ligand interactions. Anal Chem 74(24):6133–6138

    CAS  Google Scholar 

  48. Sinclair J, Olofsson J, Pihl J, Orwar O (2003) Stabilization of high-resistance seals in patch-clamp recordings by laminar flow. Anal Chem 75(23):6718–6722

    CAS  Google Scholar 

  49. Olofsson J, Pihl J, Sinclair J, Sahlin E, Karlsson M, Orwar O (2004) A microfluidics approach to the problem of creating separate solution environments accessible from macroscopic volumes. Anal Chem 76(17):4968–4976

    CAS  Google Scholar 

  50. Sinclair J, Granfeldt D, Pihl J, Millingen M, Lincoln P, Farre C, Peterson L, Orwar O (2006) A biohybrid dynamic random access memory. J Am Chem Soc 128(15):5109–5113

    CAS  Google Scholar 

  51. Granfeldt D, Sinclair J, Millingen M, Farre C, Lincoln P, Orwar O (2006) Controlling desensitized states in ligand−receptor interaction studies with cyclic scanning patch-clamp protocols. Anal Chem 78(23):7947–7953

    CAS  Google Scholar 

  52. Millingen M, Bridle H, Jesorka A, Lincoln P, Orwar O (2008) Ligand-specific temperature-dependent shifts in EC50 values for the GABAA receptor. Anal Chem 80(1):340–343

    CAS  Google Scholar 

  53. Olofsson J, Bridle H, Jesorka A, Isaksson I, Weber S, Orwar O (2009) Direct access and control of the intracellular solution environment in single cells. Anal Chem 81(5):1810–1818

    CAS  Google Scholar 

  54. Blake AJ, Pearce TM, Rao NS, Johnson SM, Williams JC (2007) Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. Lab Chip 7(7):842–849

    CAS  Google Scholar 

  55. Meier M, Lucchetta EM, Ismagilov RF (2010) Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. Lab Chip 10(16):2147–2153

    CAS  Google Scholar 

  56. Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1):57–68

    CAS  Google Scholar 

  57. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    CAS  Google Scholar 

  58. Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453

    CAS  Google Scholar 

  59. Kantak C, Beyer S, Yobas L, Bansal T, Trau D (2011) A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 11(6):1030–1035

    CAS  Google Scholar 

  60. Sochol RD, Li S, Lee LP, Lin L (2012) Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab Chip 12(20):4168–4177

    CAS  Google Scholar 

  61. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581–587

    CAS  Google Scholar 

  62. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided fluidic self-assembly of microtrains using railed microfluidics. Paper presented at the FNANO08 - 5th Annual Conference on Foundations of Nanoscience, Snowbird Cliff Lodge, Snowbird, Utah, USA, 22–25 April 2008

  63. Chung SE, Park W, Park H, Yu K, Park N, Kwon S (2007) Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl Phys Lett 91(4):041106

    Google Scholar 

  64. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365–369

    CAS  Google Scholar 

  65. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    CAS  Google Scholar 

  66. Chiang Y-Y, West J (2013) Ultrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling. Lab Chip 13(6):1031–1034

    CAS  Google Scholar 

  67. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    CAS  Google Scholar 

  68. Yamada M, Kobayashi J, Yamato M, Seki M, Okano T (2008) Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab Chip 8(5):772–778

    CAS  Google Scholar 

  69. Toyama K, Yamada M, Seki M (2012) Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomed Microdevices 14(4):751–757

    CAS  Google Scholar 

  70. Yang S, Ji B, Ündar A, Zahn JD (2006) Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures. ASAIO J 52(6):698–704

    CAS  Google Scholar 

  71. Yang S, Undar A, Zahn JD (2007) Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Lab Chip 7(5):588–595

    CAS  Google Scholar 

  72. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Google Scholar 

  73. Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814

    CAS  Google Scholar 

  74. Seger U, Gawad S, Johann R, Bertsch A, Renaud P (2004) Cell immersion and cell dipping in microfluidic devices. Lab Chip 4(2):148–151

    CAS  Google Scholar 

  75. Tornay R, Braschler T, Demierre N, Steitz B, Finka A, Hofmann H, Hubbell JA, Renaud P (2008) Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8(2):267–273

    CAS  Google Scholar 

  76. Tornay R, Braschler T, Renaud P (2009) Wide channel dielectrophoresis-based particle exchanger with electrophoretic diffusion compensation. Lab Chip 9(5):657–660

    CAS  Google Scholar 

  77. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    CAS  Google Scholar 

  78. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40

    CAS  Google Scholar 

  79. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    CAS  Google Scholar 

  80. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302

    CAS  Google Scholar 

  81. Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256

    CAS  Google Scholar 

  82. Peyman SA, Iles A, Pamme N (2008) Rapid on-chip multi-step (bio)chemical procedures in continuous flow - manoeuvring particles through co-laminar reagent streams. Chem Commun 10:1220–1222

    Google Scholar 

  83. Tarn MD, Peyman SA, Fakhrullin RF, Iles A, Paunov VN, Pamme N (2010) Magnetically actuated particle-based procedures in continuous flow. In: The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences Groningen, The Netherlands, 3–7 October 2010, pp 1679–1681

  84. Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridization in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176

    Google Scholar 

  85. Tarn MD, Fakhrullin RF, Paunov VN, Pamme N (2013) Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Mater Lett 95:182–185

    CAS  Google Scholar 

  86. Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN (2012) Cyborg cells: functionalization of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206

    CAS  Google Scholar 

  87. Baier T, Mohanty S, Drese KS, Rampf F, Kim J, Schoenfeld F (2009) Modelling immunomagnetic cell capture in CFD. Microfluid Nanofluid 7(2):205–216

    CAS  Google Scholar 

  88. Kim J, Steinfeld U, Lee H-H, Seidel H (2007) Ieee development of a novel micro immune-magnetophoresis cell sorter. In: 2007 IEEE Sensors, vols 1–3, pp 1081–1084

  89. Kim J, Lee H-H, Steinfeld U, Seidel H (2009) Fast capturing on micromagnetic cell sorter. IEEE Sensors J 9(8):908–913

    Google Scholar 

  90. Kim J, Park J, Mueller M, Lee H-H, Seidel H (2009) Uniform magnetic mobility in a curved magnetophoretic channel. In: 2009 IEEE Sensors, vols 1–3, pp 1165–1167

  91. Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265

    CAS  Google Scholar 

  92. Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612

    CAS  Google Scholar 

  93. Sasso LA, Aran K, Guan Y, Ündar A, Zahn JD (2013) Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device—a pilot study. Artif Organs 37(1):E9–E17

    Google Scholar 

  94. Ganguly R, Hahn T, Hardt S (2010) Magnetophoretic mixing for in situ immunochemical binding on magnetic beads in a microfluidic channel. Microfluid Nanofluid 8(6):739–753

    CAS  Google Scholar 

  95. Modak N, Datta A, Ganguly R (2010) Numerical analysis of transport and binding of a target analyte and functionalized magnetic microspheres in a microfluidic immunoassay. J Phys D Appl Phys 43(48):485002

    Google Scholar 

  96. Karle M, Miwa J, Czilwik G, Auwaerter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290

    CAS  Google Scholar 

  97. Karle M, Woehrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10(4):935–939

    CAS  Google Scholar 

  98. Zhou Y, Wang Y, Lin Q (2010) A microfluidic device for continuous-flow magnetically controlled capture and isolation of microparticles. J Microelectromech Syst 19(4):743–751

    CAS  Google Scholar 

  99. Lee SHS, Hatton TA, Khan SA (2011) Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluid Nanofluid 11(4):429–438

    CAS  Google Scholar 

  100. Gao Y, Lam AWY, Chan WCW (2013) Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mater Interfaces 5(8):2853–2860

    CAS  Google Scholar 

  101. Tsai SSH, Wexler JS, Wan J, Stone HA (2011) Conformal coating of particles in microchannels by magnetic forcing. Appl Phys Lett 99(15):153509

    Google Scholar 

  102. Tsai SSH, Wexler JS, Wan J, Stone HA (2013) Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab Chip 13(1):119–125

    CAS  Google Scholar 

  103. Berry SM, Alarid ET, Beebe DJ (2011) One-step purification of nucleic acid for gene expression analysis via Immiscible Filtration Assisted by Surface Tension (IFAST). Lab Chip 11(10):1747–1753

    CAS  Google Scholar 

  104. Tarn MD, Hirota N, Iles A, Pamme N (2009) On-chip diamagnetic repulsion in continuous flow. Sci Technol Adv Mater 10(1):014611

    Google Scholar 

  105. Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062

    CAS  Google Scholar 

  106. Shen F, Hwang H, Hahn YK, Park J-K (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84(7):3075–3081

    CAS  Google Scholar 

  107. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506

    CAS  Google Scholar 

  108. Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, Radel S, Sadhal S, Wiklund M (2011) Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11(21):3579–3580

    CAS  Google Scholar 

  109. Augustsson P, Åberg L, Swärd-Nilsson A-M, Laurell T (2009) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Microchim Acta 164(3–4):269–277

    CAS  Google Scholar 

  110. Augustsson P, Malm J, Ekstrom S (2012) Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics 6(3):034115

    Google Scholar 

  111. Augustsson P, Laurell T (2012) Acoustofluidics 11: affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. Lab Chip 12(10):1742–1752

    CAS  Google Scholar 

  112. Augustsson P, Laurell T, Ekstrom S (2008) Flow-through chip for sequential treatment and analyte elution from beads or cells. In: The 12th International Conference on Miniaturized Systems in Chemistry and Life Sciences, San Diego, California, USA, pp 671–673

  113. Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4(1–2):53–79

    CAS  Google Scholar 

  114. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851

    CAS  Google Scholar 

  115. Mohanty S (2012) Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. Lab Chip 12(19):3624–3636

    CAS  Google Scholar 

  116. Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76

    CAS  Google Scholar 

  117. Eriksson E, Scrimgeour J, Granéli A, Ramser K, Wellander R, Enger J, Hanstorp D, Goksör M (2007) Optical manipulation and microfluidics for studies of single cell dynamics. J Opt A Pure Appl Opt 9(8):S113–S121

    CAS  Google Scholar 

  118. Boer G, Johann R, Rohner J, Merenda F, Delacretaz G, Renaud P, Salathe RP (2007) Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Rev Sci Instrum 78(11):116101

    CAS  Google Scholar 

  119. Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, Goksor M, Graneli A (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 10(5):617–625

    CAS  Google Scholar 

  120. Wang T, Oehrlein S, Somoza MM, Sanchez Perez JR, Kershner R, Cerrina F (2011) Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides. Lab Chip 11(9):1629–1637

    CAS  Google Scholar 

  121. Wang J (2012) Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12(11):1944–1950

    CAS  Google Scholar 

  122. Kim T, Cheng L-J, Kao M-T, Hasselbrink EF, Guo L, Meyhofer E (2009) Biomolecular motor-driven molecular sorter. Lab Chip 9(9):1282–1285

    CAS  Google Scholar 

  123. Hwang H, Park J-K (2011) Optoelectrofluidic platforms for chemistry and biology. Lab Chip 11(1):33–47

    CAS  Google Scholar 

  124. Piazza R (2008) Thermophoresis: moving particles with thermal gradients. Soft Matter 4(9):1740–1744

    CAS  Google Scholar 

  125. Abecassis B, Cottin-Bizonne C, Ybert C, Ajdari A, Bocquet L (2008) Boosting migration of large particles by solute contrasts. Nat Mater 7(10):785–789

    CAS  Google Scholar 

  126. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Google Scholar 

  127. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Di Carlo D (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2(3):031017

    Google Scholar 

  128. Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649

    CAS  Google Scholar 

  129. Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ (2013) Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip 13(9):1772–1779

    CAS  Google Scholar 

  130. Zheng Y, Liu H, Wang Y, Zhu C, Wang S, Cao J, Zhu S (2011) Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble. Lab Chip 11(22):3816–3820

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sally A. Peyman, Giuseppe Benazzi, and Alexander Iles for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Pamme.

Additional information

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarn, M.D., Lopez-Martinez, M.J. & Pamme, N. On-chip processing of particles and cells via multilaminar flow streams. Anal Bioanal Chem 406, 139–161 (2014). https://doi.org/10.1007/s00216-013-7363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7363-6

Keywords

Navigation