Skip to main content
Log in

2-Acyl-dimedones as UV-active protective agents for chiral amino acids: enantiomer separations of the derivatives on chiral anion exchangers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

2-Acetyldimedone and 12 related compounds were employed as UV-active pre-column derivatizing agents for amino acids. Direct enantioseparation of the products was achieved using chiral anion exchanger stationary phases in polar-organic mobile phase mode. Under basic conditions, the reagents´ cyclic β-tricarbonyl motifs can give rise to exo- and endocyclic enols through tautomerization. However, with primary amines (proteinogenic and unusual amino acids, aminosulfonic and aminophosphonic acids), we exclusively observed the formation of exocyclic enamine-type products. Reaction yields depended strongly on the 2-acyl modification of the reagent; in particular, we observed a significant decrease when electronegative or sterically demanding substituents were present in α-position to the exocyclic carbonyl group. In addition to improving UV detectability of the products, the introduction of this protective group facilitated successful enantiomer separations of the amino acid derivatives on Cinchona-based chiral anion exchangers. Particularly high enantiomer selectivity was observed in combination with stationary phases bearing a new variation of selectors with π-acidic (electron-poor) bis(trifluoromethyl)phenyl groups. No racemization of the analytes occurred at any stage of the analytical method including the deprotection, which was achieved with hydrazine.

Enantiomer separation of 2-undecenoyldimedone derivatives of proteinogenic amino acids phenylalanine and tryptophan on a chiral stationary phase with anion-exchange characteristics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It should be noted that, strictly speaking, the concept of pH and pK a values is limited to aqueous systems. It is not advisable to assume their equality in the polar-organic mobile phase employed for these chromatographic experiments but they may serve for rough estimations of the reagent´s affinities to the ion exchangers relative to the “more acidic” reaction products.

References

  1. Lämmerhofer M, Lindner W (1996) J Chrom A 741(1):33–48

    Article  Google Scholar 

  2. Davankov VA (1997) Chirality 9(2):99–102

    Article  CAS  Google Scholar 

  3. Czerwenka C, Lämmerhofer M, Lindner W (2003) J Sep Sci 26(17):1499–1508

    Article  CAS  Google Scholar 

  4. Rubinov DB, Rubinova IL, Akhrem AA (1999) Chem Rev 99(4):1047–1066

    Article  CAS  Google Scholar 

  5. Safak B, Ciftci IH, Ozdemir M, Kiyildi N, Cetinkaya Z, Aktepe OC, Altindis M (2009) Phytother Res 23(7):955–957

    Article  CAS  Google Scholar 

  6. Chabbert YA, Scavizzi MR (1976) Antimicrob Agents Chemother 9:36–41

    Article  CAS  Google Scholar 

  7. Hoischen D, Hermann S, Kather K, Mueller K-h, Schwarz H-g, Schallner O, Drewes MW, Dahmen P, Feucht D, Pontzen R (2003) WO2003074475A2

  8. Huang KH, Eaves J, Veal J, Barta T, Geng L, Hinkley L, Hanson G (2006) WO2006091963A1

  9. Kim J, Song H, Park SB (2010) Eur J Org Chem 2010(20):3815–3822

    Article  Google Scholar 

  10. Bycroft BW, Chan WC, Chhabra SR, Hone ND (1993) J Chem Soc, Chem Commun (9):778–779

  11. Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) Tetrahedron Lett 39(12):1603–1606

    Article  CAS  Google Scholar 

  12. Dumy P, Eggleston IM, Cervigni S, Sila U, Sun X, Mutter M (1995) Tetrahedron Lett 36(8):1255

    Article  CAS  Google Scholar 

  13. Ahlborg N (1995) J Immunol Methods 179(2):269–275

    Article  CAS  Google Scholar 

  14. Page P, Bradley M, Walters I, Teague S (1999) J Org Chem 64(3):794–799

    Article  CAS  Google Scholar 

  15. Demmer O, Dijkgraaf I, Schottelius M, Wester HJ, Kessler H (2008) Org Lett 10(10):2015–2018

    Article  CAS  Google Scholar 

  16. Zhang L, Lee H-K, Pruess TH, White HS, Bulaj G (2009) J Med Chem 52(6):1514–1517

    Article  CAS  Google Scholar 

  17. Lebreton S, How S-E, Buchholz M, Yingyongnarongkul B-E, Bradley M (2003) Tetrahedron 59(22):3945–3953

    Article  CAS  Google Scholar 

  18. Bialy L, Díaz-Mochón JJ, Specker E, Keinicke L, Bradley M (2005) Tetrahedron 61(34):8295–8305

    Article  CAS  Google Scholar 

  19. Martin NI (2008) J Org Chem 74(2):946–949

    Article  Google Scholar 

  20. Dudek GO, Dudek EP (1966) J Am Chem Soc 88(11):2407–2412

    Article  CAS  Google Scholar 

  21. Hoffmann CV, Laemmerhofer M, Lindner W (2007) J Chrom A 1161(1–2):242–251

    CAS  Google Scholar 

  22. Hoffmann CV, Pell R, Lämmerhofer M, Lindner W (2008) Anal Chem 80(22):8780–8789

    Article  CAS  Google Scholar 

  23. Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan J-P, Barabasz AF, Foley BE, Barta TE, Ma W, Silinski MA, Hu M, Partridge JM, Scott A, DuBois LG, Freed T, Steed PM, Ommen AJ, Smith ED, Hughes PF, Woodward AR, Hanson GJ, McCall WS, Markworth CJ, Hinkley L, Jenks M, Geng L, Lewis M, Otto J, Pronk B, Verleysen K, Hall SE (2009) J Med Chem 52(14):4288–4305

    Article  CAS  Google Scholar 

  24. Akhrem AA, Lakhvich FA, Budai SI, Khlebnicova TS, Petrusevich II (1978) Synthesis 1978(12):925–927

    Article  Google Scholar 

  25. Mandl A, Nicoletti L, Lämmerhofer M, Lindner W (1999) J Chrom A 858(1):1–11

    Article  CAS  Google Scholar 

  26. da Silva ET, Lima ELS (2003) Tetrahedron Lett 44(18):3621–3624

    Article  Google Scholar 

  27. Wernisch S, Pell R, Lindner W (2012) J Sep Sci 35(13):1560–1572

    Article  CAS  Google Scholar 

  28. Pell R, Sić S, Lindner W (2012) J Chrom A 1269:287–296

    Article  CAS  Google Scholar 

  29. Bolvig S, Duus F, Hansen PE (1998) Magn Res Chem 36(5):315–324

    Article  CAS  Google Scholar 

  30. Forsen S, Merenyi F, Nilsson M (1964) Acta Chem Scand 18:1208–1221

    Article  CAS  Google Scholar 

  31. Khlebnikova TS, Isakova VG, Lakhvich FA (2009) Russ J Org Chem 45:993–1001, Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved

    Article  CAS  Google Scholar 

  32. Lämmerhofer M (2010) J Chrom A 1217(6):814–856

    Article  Google Scholar 

  33. Maier NM, Nicoletti L, Lämmerhofer M, Lindner W (1999) Chirality 11(7):522–528

    Article  CAS  Google Scholar 

  34. Lämmerhofer M, Lindner W (2008) Adv Chromatogr (Boca Raton, FL, U S) 46:1–107

    Article  Google Scholar 

  35. Rogers NAJ, Smith H (1955) J Chem Soc (Resumed):341–346

  36. Dreyfus M, Garnier F (1974) Tetrahedron 30(1):133–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

St. W. gratefully acknowledges funding from the interdisciplinary PhD program “IK Functional Molecules” of the University of Vienna. The authors thank Peter Frühauf for column packing and Roland Reischl for mass spectrometric experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Lindner.

Additional information

Published in the topical collection Amino Acid Analysis with guest editor Toshimasa Toyo'oka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernisch, S., Bisi, F., Cazzato, A.S. et al. 2-Acyl-dimedones as UV-active protective agents for chiral amino acids: enantiomer separations of the derivatives on chiral anion exchangers. Anal Bioanal Chem 405, 8011–8026 (2013). https://doi.org/10.1007/s00216-013-6932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6932-z

Keywords

Navigation