Skip to main content
Log in

Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ng L−1 due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem® (Gd-DOTA) and Gadovist® (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem®), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist® (Gd-BTDO3A), Magnevist® (Gd-DTPA), Omniscan® (Gd-DTPA-BMA), Dotarem® (Gd-DOTA), and Multihance® (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC–ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance® (Gd-BOPTA) up to 106 % for Gadovist® (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Wittenberg J, Ferrucci JT (1988) Gd-DOTA characterization of a new paramagnetic complex. Radiology 166(3):693–698

    CAS  Google Scholar 

  2. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-Dtpa complex—a potential NMR contrast agent. Am J Roentgenol 142(3):619–624

    CAS  Google Scholar 

  3. Ersoy H, Rybicki FJ (2007) Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 26(5):1190–1197. doi:10.1002/Jmri.21135

    Article  Google Scholar 

  4. Idée J-M, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20(6):563–576. doi:10.1111/j.1472-8206.2006.00447.x

    Article  Google Scholar 

  5. Muroff LR (2001) Contrast: current agents and issues. Appl Radiol 30:5–7

    Google Scholar 

  6. Möller P, Morteani G, Dulski P (2003) Anomalous gadolinium, cerium, and yttrium contents in the Adige and Isarco River Waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydrochimica Et Hydrobiologica 31(3):225–239. doi:10.1002/aheh.200300492

    Article  Google Scholar 

  7. Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143(1–4):245–255

    Article  CAS  Google Scholar 

  8. Elbaz-Poulichet F, Seidel JL, Othoniel C (2002) Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Res 36(4):1102–1105

    Article  CAS  Google Scholar 

  9. Morteani G, Moller P, Fuganti A, Paces T (2006) Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environ Geochem Heal 28(3):257–264. doi:10.1007/s10653-006-9040-6

    Article  CAS  Google Scholar 

  10. Knappe A, Möller P, Dulski P, Pekdeger A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chemie der Erde 65:167–189

    Article  CAS  Google Scholar 

  11. Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environ Sci Technol 40(17):5282–5288. doi:10.1021/Es060528p

    Article  CAS  Google Scholar 

  12. Nozaki Y, Lerche D, Alibo DS, Tsutsumi M (2000) Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and In. Geochimica Et Cosmochimica Acta 64(23):3975–3982

    Article  CAS  Google Scholar 

  13. Zhu YB, Hattori R, Rahmi D, Okuda S, Itoh A, Fujimori E, Umemura T, Haraguchi H (2005) Fractional distributions of trace metals in surface water of Lake Biwa as studied by ultrafiltration and ICP-MS. Bull Chem Soc Jpn 78(11):1970–1976. doi:10.1246/Bcsj.78.1970

    Article  CAS  Google Scholar 

  14. Zhu Y, Hoshino M, Yamada H, Itoh A, Haraguchi H (2004) Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya City. Bull Chem Soc Jpn 77(10):1835–1842. doi:10.1246/Bcsj.77.1835

    Article  CAS  Google Scholar 

  15. Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ Sci Technol 39(18):6923–6929. doi:10.1021/es048456u

    Article  CAS  Google Scholar 

  16. Kulaksiz S, Bau M (2007) Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet Sci Lett 260(1–2):361–371. doi:10.1016/j.epsl.2007.06.016

    Article  CAS  Google Scholar 

  17. Lawrence MG, Jupiter SD, Kamber BS (2006) Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia. Mar Freshw Res 57(7):725–736. doi:10.1071/Mf05229

    Article  CAS  Google Scholar 

  18. Nozaki Y, Lerche D, Alibo DS, Snidvongs A (2000) The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochimica Et Cosmochimica Acta 64(23):3983–3994

    Article  CAS  Google Scholar 

  19. Hennebrüder K, Wennrich R, Mattusch J, Stärk H-J, Engewald W (2004) Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta 63(2):309–316

    Article  Google Scholar 

  20. Kümmerer K, Helmers E (2000) Hospital effluents as a source of gadolinium in the aquatic environment. Environ Sci Technol 34(4):573–577. doi:10.1021/es990633h

    Article  Google Scholar 

  21. Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29(12):1784–1821. doi:10.1002/jssc.200600199

    Article  Google Scholar 

  22. Künnemeyer J, Terborg L, Nowak S, Scheffer A, Telgmann L, Tokmak F, Günsel A, Wiesmüller G, Reichelt S, Karst U (2008) Speciation analysis of gadolinium-based MRI contrast agents in blood plasma by hydrophilic interaction chromatography/electrospray mass spectrometry. Anal Chem 80(21):8163–8170. doi:10.1021/ac801264j

    Article  Google Scholar 

  23. Künnemeyer J, Terborg L, Meermann B, Brauckmann C, Möller I, Scheffer A, Karst U (2009) Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method. Environ Sci Technol 43(8):2884–2890

    Article  Google Scholar 

  24. Raju CSK, Cossmer A, Scharf H, Panne U, Lück D (2010) Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. J Anal At Spectrom 25(1):55–61

    Article  CAS  Google Scholar 

  25. Kahakachchi CL, Moore DA (2010) Identification and characterization of gadolinium(III) complexes in biological tissue extracts. Metallomics 2(7):490–497

    Article  CAS  Google Scholar 

  26. Yang LH, Wang XR, Sun H, Zhang HS (1999) The effect of EDTA on rare earth elements bioavailability in soil ecosystem. Chemosphere 38(12):2825–2833

    Article  CAS  Google Scholar 

  27. Sun H, Wang XR, Wang Q, Wang HT, Wang LS, Chen YJ, Dai LM, Cao M (1997) The effects of chemical species on bioaccumulation of rare earth elements in wheat grown in nutrient solution. Chemosphere 35(8):1699–1707

    Article  CAS  Google Scholar 

  28. Giussani A, Heinrichs U, Roth P, Werner E, Schramel P, Wendler A (1998) Biokinetic studies in humans with stable isotopes as tracers. Part 1: a methodology for incorporation of trace metals into vegetables. Isot Environ Heal Stud 34(3):291–296

    Article  CAS  Google Scholar 

  29. Nowack B, Schwyzer I, Schulin R (2008) Uptake of Zn and Fe by wheat (Triticum aestivum var. Greina) and transfer to the grains in the presence of chelating agents (ethylenediaminedisuccinic acid and ethylenediaminetetraacetic acid). J Agric Food Chem 56(12):4643–4649. doi:10.1021/jf800041b

    Article  CAS  Google Scholar 

  30. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232. doi:10.1021/es0604919

    Article  CAS  Google Scholar 

  31. Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235(1):105–114

    Article  CAS  Google Scholar 

  32. Kretschy D, Koellensperger G, Hann S (2011) Stability assessment of different chelating moieties used for elemental labeling of bio-molecules. Metallomics 3:1304–1309. doi:10.1039/C1MT00114K

    Article  CAS  Google Scholar 

  33. Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von Jarmersted C (2000) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69:409–414

    Article  Google Scholar 

  34. Bittner R (2010) Wasserwirtschaftlicher Monatsbericht Oktober 2010. Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz, Berlin

    Google Scholar 

  35. Möller K, Burgschweiger J (2008) Wasserversorgungskonzept für Berlin und für das von der BWB versorgte Umland (Entwicklung bis 2040). Berliner Wasserbetriebe

  36. Wild SR, Jones KC (1992) Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci Total Environ 119:85–119

    Article  CAS  Google Scholar 

  37. Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38(192):1141–1153

    Article  CAS  Google Scholar 

  38. Isnard P, Lambert S (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17(1):21–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Jakubowski.

Additional information

Published in the topical collection Metallomics with guest editors Uwe Karst and Michael Sperling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 170 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, U., Lingott, J., Richter, S. et al. Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 405, 1865–1873 (2013). https://doi.org/10.1007/s00216-012-6643-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6643-x

Keywords

Navigation