Skip to main content

Advertisement

Log in

A novel UPLC–MS–MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a devastating illness characterized by accumulation of uremic retention solutes in the body. The objective of this study was to develop and validate a simple, rapid, and robust UPLC–MS–MS method for simultaneous determination, in serum, of seven organic acid uremic retention toxins, namely uric acid (UA), hippuric acid (HA), indoxylsulfate (IS), p-cresylglucuronide (pCG), p-cresylsulfate (pCS), indole-3-acetic acid (IAA), and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF). Isotopically labeled internal standards (d5-HA; 1,3-15N2-UA, and d5-IAA) were used to correct for variations in sample preparation and system performance. Separation on a C18 column was followed by negative electrospray ionization and tandem mass spectrometric detection. Accuracy was below the 15 % threshold. Within-day precision varied from 0.60 to 4.54 % and between-day precision was below 13.33 % for all compounds. The applicability of the method was evaluated by analyzing 78 serum samples originating both from healthy controls and from patients at different stages of CKD. These results were compared with those obtained by use of conventional HPLC–PDA–FLD methods. A good correlation was obtained between both methods for all compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stenvinkel P (2010) Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J Intern Med 268:456–467

    Article  CAS  Google Scholar 

  2. Vanholder R, Meert N, Schepers E, Glorieux G (2008) Uremic toxins: do we know enough to explain uremia? Blood Purif 26:77–81

    Article  CAS  Google Scholar 

  3. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19:863–870

    Article  Google Scholar 

  4. Vanholder R, Van Laecke S, Glorieux G (2008) What is new in uremic toxicity? Pediatr Nephrol 23:1211–1221

    Article  Google Scholar 

  5. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N, for the European Uremic Toxin Work (2005) Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 20:1048–1056

    Article  CAS  Google Scholar 

  6. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW (2003) Kidney disease as a risk factor for development of cardiovascular disease—A statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circ 108:2154–2169

    Article  Google Scholar 

  7. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jörres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W, European Uremic Toxin Work Group (EUTox) (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    Article  CAS  Google Scholar 

  8. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A, on behalf of the European Uremic Toxin Work (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23:1258–1270

    Article  Google Scholar 

  9. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF (2007) Relationship of uric acid with progression of kidney disease. Am J Kidney Dis 50:239–247

    Article  CAS  Google Scholar 

  10. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, Collins AJ, Levey AS, Menon V (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53:796–803

    Article  CAS  Google Scholar 

  11. Yavuz A, Tetta C, Ersoy FF, D’intini V, Ratanarat R, De Cal M, Bonello M, Bordoni V, Salvatori G, Andrikos E, Yakupoglu G, Levin NW, Ronco C (2005) Uremic toxins: a new focus on an old subject. Semin Dial 18:203–211

    Article  Google Scholar 

  12. Miyazaki T, Ise M, Seo H, Niwa T (1997) Indoxyl sulfate increases the gene expressions of TGF-β1, TIMP-1 and pro-α1(I) collagen in uremic rat kidneys. Kidney Int 52(S62):S15–S22

    Google Scholar 

  13. Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T (2003) Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappa B and free radical in proximal tubular cells. Kidney Int 63:1671–1680

    Article  CAS  Google Scholar 

  14. Enomoto A, Takeda M, Tojo A, Sekine T, Cha SH, Khamdang S, Takayama F, Aoyama I, Nakamura S, Endou H, Niwa T (2002) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13:1711–1720

    Article  CAS  Google Scholar 

  15. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P (2007) The uremic solute indoxyl sulphate induces oxidative stress in endothelial cells. J Thromb Haemost 5:1302–1308

    Article  CAS  Google Scholar 

  16. Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T (2008) Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant 23:1892–1901

    Article  CAS  Google Scholar 

  17. Schroeder JC, DiNatale BC, Murray IA, Flaveny CA, Liu Q, Laurenzana EM, Lin JM, Strom SC, Omiecinski CJ, Amin S, Perdew GH (2009) The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochem 49:393–400

    Google Scholar 

  18. Meijers BKI, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF, Evenepoel P (2009) The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54:891–901

    Article  CAS  Google Scholar 

  19. Schepers E, Meert N, Glorieux G, Goeman J, Van der Eycken J, Vanholder R (2007) P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant 22:592–596

    Article  CAS  Google Scholar 

  20. Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, Dhondt A, Van der Eycken J, Vanholder R (2012) Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant 27:2388–2396

    Article  CAS  Google Scholar 

  21. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Vanholder R, Brunet P (2009) Protein-bound toxins—update 2009. Semin Dial 22:334–339

    Article  Google Scholar 

  22. Martinez AW, Recht NS, Hostetter TH, Meyer TW (2005) Removal of p-cresol sulfate by hemodialysis. J Am Soc Nephrol 16:3430–3436

    Article  CAS  Google Scholar 

  23. Meert N, Eloot S, Waterloos MA, Van Landschoot M, Dhondt A, Glorieux G, Ledebo I, Vanholder R (2009) Effective removal of protein-bound uraemic solutes by different convective strategies: a prospective trial. Nephrol Dial Transplant 24:562–570

    Article  CAS  Google Scholar 

  24. Eloot S, Dhondt A, Van Landschoot M, Waterloos MA, Vanholder R (2012) Removal of water-soluble and protein-bound solutes with reversed mid-dilution versus post-dilution haemodiafiltration. Nephrol Dial Transplant 27:3278–3283

    Google Scholar 

  25. Huang Y, Sun H, Frassetto L, Benet LZ, Lin ET (2006) Liquid chromatographic tandem mass spectrometric assay for the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in human plasma. Rapid Commun Mass Spectrom 20:1611–1614

    Article  CAS  Google Scholar 

  26. Dai X, Fang X, Zhang C, Xu R, Xu B (2007) Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J Chromatogr B 857:287–295

    Article  CAS  Google Scholar 

  27. Kim KM, Henderson GN, Ouyang X, Frye RF, Sautin YY, Feig DI, Johnson RJ (2009) A sensitive and specific liquid chromatography-tandem mass spectrometry method for the determination of intracellular and extracellular uric acid. J Chromatogr B 877:2032–2038

    Article  CAS  Google Scholar 

  28. Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T (2010) Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry. J Chromatogr B 878:2997–3002

    Article  CAS  Google Scholar 

  29. Calaf R, Cerini C, Génovésio CC, Verhaeghe P, Jourde-Chiche NM, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George FO, Brunet P, Charpiot P (2011) Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B 879:2281–2286

    Article  CAS  Google Scholar 

  30. de Loor H, Meijers BRKI, Meyer TW, Bammens B, Verbeke K, Dehaen W, Evenepoel P (2009) Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A 1216:4684–4688

    Article  Google Scholar 

  31. Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, Wu CJ (2011) p-cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 25:191–197

    Article  CAS  Google Scholar 

  32. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T (2012) Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 403:1841–1850

    Article  CAS  Google Scholar 

  33. Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R (2002) Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis 40:339–347

    Article  CAS  Google Scholar 

  34. Feigenbaum J, Neuberg CA (1941) Simplified method for the preparation of aromatic sulfuric acid esters. J Am Chem Soc 63:3529–3530

    Article  CAS  Google Scholar 

  35. Van der Eycken E, Terryn N, Goeman JL, Carlens G, Nerinckx W, Claeyssens M, Van der Eycken J, Van Montagu M, Brito-Arias M, Engler G (2000) Sudan-β-d-glucuronides and their use for the histochemical localization of β-glucuronidase activity in transgenic plants. Plant Cell Rep 19:966–970

    Article  Google Scholar 

  36. Definition and Procedure for the Determination of the Method Detection Limit 40 CFR, Part 136, Appendix B. http://www.epa.gov/region9/qa/pdfs/40cfr136_03.pdf

  37. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Google Scholar 

  38. Bressolle F, Bromet-Petit M, Audran M (1996) Validation of liquid chromatographic and gas chromatographic methods Applications to pharmacokinetics. J Chromatogr B Biomed Sci Appl 686(1):3–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jente Boelaert gratefully acknowledges financial support from the Agency for Innovation in Science and Technology in Flanders (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Lynen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boelaert, J., Lynen, F., Glorieux, G. et al. A novel UPLC–MS–MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients. Anal Bioanal Chem 405, 1937–1947 (2013). https://doi.org/10.1007/s00216-012-6636-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6636-9

Keywords

Navigation