Skip to main content
Log in

Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the development of a hyphenated instrument with the capacity to quantitatively characterize aqueous suspended gold nanoparticles (AuNPs) based on a combination of gas-phase size separation, particle counting, and elemental analysis. A customized electrospray-differential mobility analyzer (ES-DMA) was used to achieve real-time upstream size discrimination. A condensation particle counter and inductively coupled plasma mass spectrometer (ICP-MS) were employed as downstream detectors, providing information on number density and elemental composition, respectively, of aerosolized AuNPs versus the upstream size selected by ES-DMA. A gas-exchange device was designed and optimized to improve the conversion of air flow (from the electrospray) to argon flow required to sustain the ICP-MS plasma, the key compatibility issue for instrumental hyphenation. Our work provides the proof of concept and a working prototype for utilizing this construct to successfully measure (1) number- and mass-based distributions; (2) elemental compositions of nanoparticles classified by size, where the size classification and elemental analysis are performed within a single experiment; (3) particle concentrations in both solution (before size discrimination) and aerosol (after size discrimination) phases; and (4) the number of atoms per nanoparticle or the nanoparticle density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

References

  1. Henig RM (2007) Our silver-coated future. OnEarth. Fall 2007

  2. Jin R (2012) Nanotechnology Review 1:31–56

    Google Scholar 

  3. Fakruddin M, Hossain Z, Afroz H (2012) Journal of Nanobiotechnology 10:31

    Google Scholar 

  4. Conde J, Rosa J, Lima JC, Baptista PV (2012) Int J Photoenergy. doi:10.1155/2012/619530

  5. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Nanomaterials 1:31–63

    Article  CAS  Google Scholar 

  6. Riggio C, Pagni E, Raffa V, Cuschieri A (2011) J Nanomaterials. doi:10.1155/2011/164506

  7. Duncan TV (2011) J Colloid Interf Sci 363:1–24

    Article  CAS  Google Scholar 

  8. Somasundaran P, Mehta SC, Rhein L, Chakraborty S (2007) MRS Bull 32:779–786

    Article  CAS  Google Scholar 

  9. Sharrna P, Brown S, Walter G, Santra S, Moudgil B (2006) Adv Colloid Interfac 123:471–485

    Article  Google Scholar 

  10. Zhang S, Sun D, Fu YQ, Du HJ (2003) Surf Coat Tech 167:113–119

    Article  CAS  Google Scholar 

  11. Tsai DH, Elzey S, DelRio FW, Keene AM, Tyner KM, Clogston JD, MacCuspie RI, Guha S, Zachariah MR, Hackley VA (2012) Nanoscale 4:3208–3217

    Article  CAS  Google Scholar 

  12. Aravind A, Veeranarayanan S, Poulose A, Nair R, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2012) BioNanoScience 2:1–8

    Article  Google Scholar 

  13. McNeil SE (2011) Characterization of nanoparticles intended for drug delivery. Springer, New York

    Book  Google Scholar 

  14. Dobrovolskaia MA, Mcneil SE (2007) Nat Nanotechnol 2:469–478

    Article  CAS  Google Scholar 

  15. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanomedicine-Uk 6:715–728

    Article  CAS  Google Scholar 

  16. Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Langmuir 27:2464–2477

    Article  CAS  Google Scholar 

  17. Paciotti GF, Kingston DGI, Tamarkin L (2006) Drug Develop Res 67:47–54

    Article  CAS  Google Scholar 

  18. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Drug Deliv 11:169–183

    Article  CAS  Google Scholar 

  19. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Anal Bioanal Chem 391:943–950

    Article  CAS  Google Scholar 

  20. Bolea E, Jiménez-Lamana J, Laborda F, Castillo J (2011) Anal Bioanal Chem 401:2723–2732

    Article  CAS  Google Scholar 

  21. Gautier E, Roberti M, Gettar R, Jiménez Rebagliati R, Batistoni D (2007) Anal Bioanal Chem 388:499–503

    Article  CAS  Google Scholar 

  22. Helfrich A, Bettmer J (2011) Int J Mass Spectrom 307:92–98

    Article  CAS  Google Scholar 

  23. Elzey S, Tsai D-H, Rabb S, Yu L, Winchester M, Hackley V (2012) Anal Bioanal Chem 403:145–149

    Article  CAS  Google Scholar 

  24. Tsai DH, Huang TJ (2002) Appl Catal Gen 223:1–9

    Article  CAS  Google Scholar 

  25. Tsai DH, Zangmeister RA, Pease Iii LF, Tarlov MJ, Zachariah MR (2008) Langmuir 24:8483–8490

    Article  CAS  Google Scholar 

  26. Cho TJ, Zangmeister RA, MacCuspie RI, Patri AK, Hackley VA (2011) Chem Mater 23:2665–2676

    Article  CAS  Google Scholar 

  27. Scheffer A, Engelhard C, Sperling M, Buscher W (2008) Anal Bioanal Chem 390:249–252

    Article  CAS  Google Scholar 

  28. Sanchez SI, Small MW, Zuo J-m, Nuzzo RG (2009) J Am Chem Soc 131:8683–8689

    Article  CAS  Google Scholar 

  29. Tsai D-H, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Langmuir 27:9302–9313

    Article  CAS  Google Scholar 

  30. Tsai DH, Cho TJ, DelRio FW, Taurozzi J, Zachariah MR, Hackley VA (2011) J Am Chem Soc 133:8884–8887

    Article  CAS  Google Scholar 

  31. Pease LF, Tsai DH, Brorson KA, Guha S, Zachariah MR, Tarlov MJ (2012) Anal Chem 83(5):1753–1759

    Google Scholar 

  32. Tsai D-H, DelRio FW, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2010) Langmuir 26:10325–10333

    Article  CAS  Google Scholar 

  33. Kapellios EA, Pergantis SA (2012) J Anal Atom Spectrom 27:21–24

    Article  CAS  Google Scholar 

  34. Myojo T, Takaya M, Ono-Ogasawara M (2002) Aerosol Sci Tech 36:76–83

    Article  CAS  Google Scholar 

  35. Pease LF (2012) Trends Biotechnol 30:216–224

    Article  CAS  Google Scholar 

  36. Guha S, Li M, Tarlov MJ, Zachariah MR (2012) Trends Biotechnol 30:291–300

    Article  CAS  Google Scholar 

  37. Tsai DH, Pease LF 3rd, Zangmeister RA, Tarlov MJ, Zachariah MR (2009) Langmuir 25:140–146

    Article  CAS  Google Scholar 

  38. Pease LF 3rd, Sorci M, Guha S, Tsai DH, Zachariah MR, Tarlov MJ, Belfort G (2010) Biophys J 99:3979–3985

    Article  CAS  Google Scholar 

  39. Carazzone C, Raml R, Pergantis SA (2008) Anal Chem 80:5812–5818

    Article  CAS  Google Scholar 

  40. Hogan CJ, Kettleson EM, Ramaswami B, Chen DR, Biswas P (2006) Anal Chem 78:844–852

    Article  CAS  Google Scholar 

  41. Li MD, Guha S, Zangmeister R, Tarlov MJ, Zachariah MR (2011) Aerosol Sci Tech 45:849–860

    Article  CAS  Google Scholar 

  42. Li M, Guha S, Zangmeister R, Tarlov MJ, Zachariah MR (2011) Langmuir 27:14732–14739

    Article  CAS  Google Scholar 

  43. Gschwind S, Flamigni L, Koch J, Borovinskaya O, Groh S, Niemax K, Gunther D (2011) J Anal Atom Spectrom 26:1166–1174

    Article  CAS  Google Scholar 

  44. Kovacs R, Nishiguchi K, Utani K, Gunther D (2010) J Anal Atom Spectrom 25:142–147

    Article  CAS  Google Scholar 

  45. Nishiguchi K, Utani K, Fujimori E (2008) J Anal Atom Spectrom 23:1125–1129

    Article  CAS  Google Scholar 

  46. Suzuki Y, Sato H, Hikida S, Nishiguchi K, Furuta N (2010) J Anal Atom Spectrom 25:947–949

    Article  CAS  Google Scholar 

  47. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Nanomedicine: Nanotechnology, Biology, and Medicine 5:106–117

    Article  CAS  Google Scholar 

  48. Kim SH, Mulholland GW, Zachariah MR (2007) J Aerosol Sci 38:823–842

    Article  CAS  Google Scholar 

  49. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

  50. Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DYH (2006) J Res Natl Inst Stan 111:257–312

    Article  Google Scholar 

  51. National Institute of Standards and Technology Report of Investigation RM8011–RM8013 2008

  52. Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Langmuir 28:10860–10872

    Article  CAS  Google Scholar 

  53. Alvarez PJJ, Colvin V, Lead J, Stone V (2009) ACS Nano 3:1616–1619

    Article  CAS  Google Scholar 

  54. Hassellöv M, Lyvén B, Haraldsson C, Sirinawin W (1999) Anal Chem 71:3497–3502

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed while S.E. held a National Research Council Research Associateship Award at NIST. The authors thank Yonggao Yan and Mindong Li at NIST for their help with developing the customized DMA program. The authors thank Robert Cook and Julien Gigault at NIST, and Prof. Michael Zachariah at the University of Maryland, for manuscript review and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent A. Hackley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzey, S., Tsai, DH., Yu, L.L. et al. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal Chem 405, 2279–2288 (2013). https://doi.org/10.1007/s00216-012-6617-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6617-z

Keywords

Navigation