Skip to main content
Log in

Determination of currently used pesticides in biota

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although pesticides enable control of the quantity and quality of farm products and food, and help to limit diseases in humans transmitted by insects and rodents, they are regarded as among the most dangerous environmental contaminants because of their tendency to bioaccumulate, and their mobility and long-term effects on living organisms. In the past decade, more analytical methods for accurate identification and quantitative determination of traces of pesticides in biota have been developed to improve our understanding of their risk to ecosystems and humans. Because sample preparation is often the rate-determining step in analysis of pesticides in biological samples, this review first discusses extraction and clean-up procedures, after a brief introduction to the classes, and the methods used in the analysis of pesticides in biota. The analytical methods, especially chromatographic techniques and immunoassay-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published since 2008 on methods for analysis of currently used pesticides in biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karami-Mohajeri S, Abdollahi M (2011) Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30:1119–1140

    CAS  Google Scholar 

  2. Hernke MT, Podein RJ (2012) Sustainability, health and precautionary perspectives on lawn pesticides, and alternatives. Ecohealth 8:223–232

    Google Scholar 

  3. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Pub Health 8:1402–1419

    CAS  Google Scholar 

  4. Sharma D, Nagpal A, Pakade YB, Katnoria JK (2010) Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: a review. Talanta 82:1077–1089

    CAS  Google Scholar 

  5. Kumar A, Malik AK, Pico Y (2010) Sample preparation methods for the determination of pesticides in foods using CE–UV/MS. Electrophoresis 31:2115–2125

    CAS  Google Scholar 

  6. Malik AK, Blasco C, Pico Y (2010) Liquid chromatography–mass spectrometry in food safety. J Chromatogr A 1217:4018–4040

    CAS  Google Scholar 

  7. Blasco C, Pico Y (2009) Prospects for combining chemical and biological methods for integrated environmental assessment. Trends Anal Chem 28:745–757

    CAS  Google Scholar 

  8. Pico Y, Barcelo D (2008) The expanding role of LC–MS in analyzing metabolites and degradation products of food contaminants. Trends Anal Chem 27:821–835

    CAS  Google Scholar 

  9. Soler C, Pico Y (2007) Recent trends in liquid chromatography–tandem mass spectrometry to determine pesticides and their metabolites in food. Trends Anal Chem 26:103–115

    CAS  Google Scholar 

  10. Pico Y, Font G, Ruiz MJ, Fernandez M (2006) Control of pesticide residues by liquid chromatography–mass spectrometry to ensure food safety. Mass Spectrom Rev 25:917–960

    CAS  Google Scholar 

  11. Eqani SAMA, Malik RN, Alamdar A, Faheem H (2012) Status of organochlorine contaminants in the different environmental compartments of Pakistan: a review on occurrence and levels. Bull Environ Contam Toxicol 88:303–310

    Google Scholar 

  12. Domingo JL (2012) Polybrominated diphenyl ethers in food and human dietary exposure: a review of the recent scientific literature. Food Chem Toxicol 50:238–249

    CAS  Google Scholar 

  13. Bruhl CA, Pieper S, Weber B (2011) Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ Toxicol Chem 30:2465–2472

    Google Scholar 

  14. Macneale KH, Kiffney PM, Scholz NL (2010) Pesticides, aquatic food webs, and the conservation of Pacific salmon. Frontiers Ecol Environ 8:475–482

    Google Scholar 

  15. Caceres T, Megharaj M, Venkateswarlu K, Sethunathan N, and Naidu R (2010) Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology

  16. Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol 204:1–132

    CAS  Google Scholar 

  17. Daam MA, van den Brink PJ (2010) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 19:24–37

    CAS  Google Scholar 

  18. Pareja L, Fernandez-Alba AR, Cesio V, Heinzen H (2011) Analytical methods for pesticide residues in rice. Trends Anal Chem 30:270–291

    CAS  Google Scholar 

  19. Gilbert-Lopez B, Garcia-Reyes JF, Molina-Diaz A (2009) Sample treatment and determination of pesticide residues in fatty vegetable matrices: a review. Talanta 79:109–128

    CAS  Google Scholar 

  20. Garcia-Reyes JF, Ferrer C, Gomez-Ramos MJ, Molina-Diaz A, Fernandez-Alba AR (2007) Determination of pesticide residues in olive oil and olives. Trends Anal Chem 26:239–251

    CAS  Google Scholar 

  21. Vidal JLM, Plaza-Bolanos P, Romero-Gonzalez R, Frenich AG (2009) Determination of pesticide transformation products: a review of extraction and detection methods. J Chromatogr A 1216:6767–6788

    Google Scholar 

  22. Beyer A, Biziuk M (2008) Methods for determining pesticides and polychlorinated biphenyls in food samples-problems and challenges. Crit Rev Food Sci Nutr 48:888–904

    CAS  Google Scholar 

  23. Lambropoulou DA, Albanis TA (2007) Methods of sample preparation for determination of pesticide residues in food matrices by chromatography–mass spectrometry-based techniques: a review. Anal Bioanal Chem 389:1663–1683

    CAS  Google Scholar 

  24. Fenik J, Tankiewicz M, Biziuk M (2011) Properties and determination of pesticides in fruits and vegetables. Trends Anal Chem 30:814–826

    CAS  Google Scholar 

  25. Kujawski MW, Namiesnik J (2008) Challenges in preparing honey samples for chromatographic determination of contaminants and trace residues. Trends Anal Chem 27:785–793

    CAS  Google Scholar 

  26. Mansour M, Barcelo D, Albaiges J (1992) Analytical methodology for screening organophosphorus pesticides in biota samples. Sci Total Environ 123:45–56

    Google Scholar 

  27. Buchanan I, Liang HC, Khan W, Liu ZK, Singh R, Ikehata K, Chelme-Ayala P (2009) Pesticides and herbicides. Water Environ Res 81:1731–1816

    CAS  Google Scholar 

  28. Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4:945–949

    Google Scholar 

  29. OECD-FAO (2009) Agricultural Outlook 2009–2018. OECD/FAO.

  30. Casella C, Myers M, Mollman H (2009) The Food Institute’s Food Industry review, Your link to Food Industry Information. The American Institute of Food Distribution. The American Institute of Food Distribution, New Jersey

    Google Scholar 

  31. Eurostat.Statistical books (2007) The use of plant protection products in the European Union. Data 1992–2003. European Communities, Luxembourg

    Google Scholar 

  32. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984

    CAS  Google Scholar 

  33. Battaglin WA, Rice KC, Focazio MJ, Salmons S, Barry RX (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006. Environ Monit Assess 155:281–307

    CAS  Google Scholar 

  34. USGD (2009) Pesticides in stream sediment and aquatic biota. Current understanding of distribution and major influences. Fact Sheet 092-00. U.S. Geological Survey

  35. Rawn DFK, Judge J, Roscoe V (2010) Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues. Anal Bioanal Chem 397:2525–2531

    CAS  Google Scholar 

  36. Han D, Row KH (2012) Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim Acta 176:1–22

    CAS  Google Scholar 

  37. Stocka J, Tankiewicz M, Biziuk M, Namiesnik J (2011) Green aspects of techniques for the determination of currently used pesticides in environmental samples. Int J Mol Sci 12:7785–7805

    CAS  Google Scholar 

  38. Ojeda CB, Rojas FS (2011) Separation and preconcentration by dispersive liquid–liquid microextraction procedure: recent applications. Chromatographia 74:651–679

    CAS  Google Scholar 

  39. Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413

    CAS  Google Scholar 

  40. Ganjali MR, Sobhi HR, Farahani H, Norouzi P, Dinarvand R, Kashtiaray A (2010) Solid drop based liquid-phase microextraction. J Chromatogr A 1217:2337–2341

    CAS  Google Scholar 

  41. Tadeo JL, Sanchez-Brunete C, Albero B, Garcia-Valcarcel AI (2010) Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J Chromatogr A 1217:2415–2440

    CAS  Google Scholar 

  42. Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217:2521–2532

    CAS  Google Scholar 

  43. Ojeda CB, Rojas FS (2009) Separation and preconcentration by dispersive liquid–liquid microextraction procedure: a review. Chromatographia 69:1149–1159

    Google Scholar 

  44. Zeng JB, Chen JM, Chen WF, Huang XL, Chen LB, Chen X (2009) Recent development of laboratory-made solid-phase microextraction fibers on the application of food safety analysis. Food Sci Biotechnol 18:579–585

    CAS  Google Scholar 

  45. Duan CF, Shen Z, Wu DP, Guan YF (2011) Recent developments in solid-phase microextraction for on-site sampling and sample preparation. Trends Anal Chem 30:1568–1574

    CAS  Google Scholar 

  46. Zgola-Grzeskowiak A, Grzeskowiak T (2011) Dispersive liquid–liquid microextraction. Trends Anal Chem 30:1382–1399

    CAS  Google Scholar 

  47. Herrera-Herrera AV, Asensio-Ramos M, Hernandez-Borges J, Rodriguez-Delgado MA (2010) Dispersive liquid–liquid microextraction for determination of organic analytes. Trends Anal Chem 29:728–751

    CAS  Google Scholar 

  48. Tena MT, Carrillo JD (2007) Multiple solid-phase microextraction: theory and applications. Trends Anal Chem 26:206–214

    CAS  Google Scholar 

  49. Mohamed R, Guy PA (2011) The pivotal role of mass spectrometry in determining the presence of chemical contaminants in food raw materials. Mass Spectrom Rev 30:1073–1095

    CAS  Google Scholar 

  50. Botitsi HV, Garbis SD, Economou A, Tsipi DF (2011) Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev 30:907–939

    CAS  Google Scholar 

  51. Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A (2011) Multistage mass spectrometry in quality, safety and origin of foods. Eur J Mass Spectrom 17:1–31

    CAS  Google Scholar 

  52. Petz M (2009) Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Mon Chem 140:953–964

    CAS  Google Scholar 

  53. Cserhati T, Szogyi M (2012) Chromatographic determination of fungicides in biological and environmental matrices. New achievements. Biomed Chromatogr 26:276–282

    CAS  Google Scholar 

  54. Domotorova M, Matisova E (2008) Fast gas chromatography for pesticide residues analysis. J Chromatogr A 1207:1–16

    Google Scholar 

  55. Fernandez-Alba AR, Garcia-Reyes JF (2008) Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC–MS. Trends Anal Chem 27:973–990

    CAS  Google Scholar 

  56. Barcelo D, Petrovic M (2007) Challenges and achievements of LC–MS in environmental analysis: 25 years on. Trends Anal Chem 26:2–11

    CAS  Google Scholar 

  57. Herrero M, Garcia-Canas V, Simo C, Cifuentes A (2010) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 31:205–228

    CAS  Google Scholar 

  58. Font G, Ruiz MJ, Fernandez M, Pico Y (2008) Application of capillary electrophoresis–mass spectrometry for determining organic food contaminants and residues. Electrophoresis 29:2059–2078

    CAS  Google Scholar 

  59. Prestes OD, Friggi CA, Adaime MB, Zanella R (2009) Quechers - a modern sample preparation method for pesticide multiresidue determination in food by chromatographic methods coupled to mass spectrometry. Quim Nova 32:1620–1634

    CAS  Google Scholar 

  60. Bedendo GC, Jardim ICSF, Carasek E (2012) Multiresidue determination of pesticides in industrial and fresh orange juice by hollow fiber microporous membrane liquid–liquid extraction and detection by liquid chromatography–electrospray-tandem mass spectrometry. Talanta 88:573–580

    CAS  Google Scholar 

  61. Kowalski J, Misselwitz M, Thomas J, Cochran J (2011) Analysis of pesticides in dietary supplements: evaluation of QuEChERS, Cartridge SPE clean-up, and gas chromatography time-of-flight mass spectrometry. Agro Food Ind Hi-Tech 22:8–11

    Google Scholar 

  62. Wiilkowska A, Biziuk M (2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125:803–812

    Google Scholar 

  63. Andrade GCRM, Freguglia RMO, Furlani RPZ, Torres NH, Tornisielo VL (2011) Determination of pesticide residues in tomato using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry. J Braz Chem Soc 22:1701–1708

    CAS  Google Scholar 

  64. Botero-Coy AM, Marin JM, Ibanez M, Sancho JV, Hernandez F (2012) Multi-residue determination of pesticides in tropical fruits using liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 402:2287–2300

    CAS  Google Scholar 

  65. Chen LN, Song FR, Liu ZQ, Zheng Z, Xing JP, Liu SY (2012) Multi-residue method for fast determination of pesticide residues in plants used in traditional Chinese medicine by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1225:132–140

    CAS  Google Scholar 

  66. Dong J, Pan YX, Lv JX, Sun J, Gong XM, Li K (2011) Multiresidue method for the determination of pesticides in fruits and vegetables using gas chromatography–negative chemical ionization–triple quadrupole tandem mass spectrometry. Chromatographia 74:109–119

    CAS  Google Scholar 

  67. Georgakopoulos P, Zachari R, Mataragas M, Athanasopoulos P, Drosinos EH, Skandamis PN (2011) Optimisation of octadecyl (C(18)) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology. Food Chem 128:536–542

    CAS  Google Scholar 

  68. Kim BM, Park JS, Choi JH, Abd El-Aty AM, Na TW, Shim JH (2012) Residual determination of clothianidin and its metabolites in three minor crops via tandem mass spectrometry. Food Chem 131:1546–1551

    CAS  Google Scholar 

  69. Li J, Dong FS, Xu J, Liu XG, Li YB, Shan WL, Zheng YQ (2011) Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modified QuEChERS (quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry. Anal Chim Acta 702:127–135

    CAS  Google Scholar 

  70. Queiroz SCN, Ferracini VL, Rosa MA (2012) Multiresidue method validation for determination of pesticides in food using quechers and Uplc–Ms/Ms. Quim Nova 35:185–192

    CAS  Google Scholar 

  71. Castillo M, Gonzalez C, Miralles A (2011) An evaluation method for determination of non-polar pesticide residues in animal fat samples by using dispersive solid-phase extraction clean-up and GC–MS. Anal Bioanal Chem 400:1315–1328

    CAS  Google Scholar 

  72. Kamel A (2010) Refined methodology for the determination of neon icotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography–tandem mass spectrometry (LC–MS–MS). J Agric Food Chem 58:5926–5931

    CAS  Google Scholar 

  73. Lazartigues A, Fratta C, Baudot R, Wiest L, Feidt C, Thomas M, Cren-Olive C (2011) Multiresidue method for the determination of 13 pesticides in three environmental matrices: water, sediments and fish muscle. Talanta 85:1500–1507

    CAS  Google Scholar 

  74. Liu JX, Zhang Y, Ding L, Liu XX, Huang ZQ, Chen B, Wang LB (2011) Determination of 20 sulfonylurea herbicides residues in animal origin foods by high performance liquid chromatography–tandem mass spectrometry. Chinese J Anal Chem 39:664–669

    CAS  Google Scholar 

  75. Wiest L, Bulete A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, Arnaudguilhem C (2011) Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J Chromatogr A 1218:5743–5756

    CAS  Google Scholar 

  76. Blasco C, Vazquez-Roig P, Onghena M, Masia A, Pico Y (2011) Analysis of insecticides in honey by liquid chromatography–ion trap-mass spectrometry: comparison of different extraction procedures. J Chromatogr A 1218:4892–4901

    CAS  Google Scholar 

  77. El-Amrani S, Pena-Abaurrea M, Sanz-Landaluze J, Ramos L, Guinea J, and Imara C (2012) Bioconcentration of pesticides in Zebrafish eleutheroembryos (Danio rerio). Sci Total Environ 425:184–190

    Google Scholar 

  78. Menezes Filho A, dos Santos FN, de Paula Pereira PA (2010) Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GCG-MS) for the determination of pesticide residues in mangoes. Talanta 81:346–354

    CAS  Google Scholar 

  79. Rodrigues FD, Mesquita PRR, de Oliveira LS, de Oliveira FS, Menezes A, Pereira PAD, de Andrade JB (2011) Development of a headspace solid-phase microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. Microchem J 98:56–61

    CAS  Google Scholar 

  80. Lavagnini I, Urbani A, Magno F (2011) Overall calibration procedure via a statistically based matrix-comprehensive approach in the stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry analysis of pesticide residues in fruit-based soft drinks. Talanta 83:1754–1762

    CAS  Google Scholar 

  81. Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 88:209–215

    CAS  Google Scholar 

  82. Farajzadeh MA, Djozan D, Mogaddam MRA, Bamorowat M (2011) Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid–liquid microextraction followed by GC–FID and GC–MS determinations. J Sep Sci 34:1309–1316

    CAS  Google Scholar 

  83. Wang Y, You JY, Ren RB, Xiao Y, Gao SQ, Zhang HQ, Yu AM (2010) Determination of triazines in honey by dispersive liquid–liquid microextraction high-performance liquid chromatography. J Chromatogr A 1217:4241–4246

    CAS  Google Scholar 

  84. Fontana AR, Camargo AB, Altamirano JC (2010) Coacervative microextraction ultrasound-assisted back-extraction technique for determination of organophosphates pesticides in honey samples by gas chromatography–mass spectrometry. J Chromatogr A 1217:6334–6341

    CAS  Google Scholar 

  85. Amendola G, Pelosi P, Dommarco R (2011) Solid-phase extraction for multi-residue analysis of pesticides in honey. J Environ Sci Health Part B-Pestic Contam Agric Wastes 46:24–34

    CAS  Google Scholar 

  86. Bezerra DSS, Silva MMS, de Carvalho PHV, Aquino A, Navickiene S (2010) Mspd procedure combined with Gc–Ms for the determination of procymidone, bifenthrin, malathion and pirimicarb in honey. Quim Nova 33:1348–1351

    CAS  Google Scholar 

  87. Brutti M, Blasco C, Pico Y (2010) Determination of benzoylurea insecticides in food by pressurized liquid extraction and LC–MS. J Sep Sci 33:1–10

    CAS  Google Scholar 

  88. Garcia-Chao M, Agruna MJ, Calvete GF, Sakkas V, Llompart M, Dagnac T (2010) Validation of an off line solid phase extraction liquid chromatography–tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Anal Chim Acta 672:107–113

    CAS  Google Scholar 

  89. Perez-Parada A, Colazzo M, Besil N, Geis-Asteggiante L, Rey F, Heinzen H (2011) Determination of coumaphos, chlorpyrifos and ethion residues in propolis tinctures by matrix solid-phase dispersion and gas chromatography coupled to flame photometric and mass spectrometric detection. J Chromatogr A 1218:5852–5857

    CAS  Google Scholar 

  90. Gutierrez Valencia TMG, García de Llasera MPG (2011) Determination of organophosphorus pesticides in bovine tissue by an on-line coupled matrix solid-phase dispersion-solid phase extraction-high performance liquid chromatography with diode array detection method. J Chromatogr A 1218:6869–6877

    CAS  Google Scholar 

  91. Zhou SN, Ouyang GF, Pawliszyn J (2008) Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies. J Chromatogr A 1196:46–56

    Google Scholar 

  92. Zhou SN, Zhao W, Pawliszyn J (2008) Kinetic calibration using dominant pre-equilibrium desorption for on-site and in vivo sampling by solid-phase microextraction. Anal Chem 80:481–490

    CAS  Google Scholar 

  93. Yang LX, Li HL, Zeng FG, Liu YP, Li RF, Chen HJ, Zhao YF, Miao H, Wu YN (2012) Determination of 49 organophosphorus pesticide residues and their metabolites in fish, egg, and milk by dual gas chromatography–dual pulse flame photometric detection with gel permeation chromatography cleanup. J Agric Food Chem 60:1906–1913

    CAS  Google Scholar 

  94. Sun XJ, Zhu F, Xi JB, Lu TB, Liu H, Tong YX, Ouyang GF (2011) Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry. Mar Pollut Bull 63:102–107

    CAS  Google Scholar 

  95. de Pinho GP, Neves AA, de Queiroz MELR, Silverio FO (2010) Optimization of the liquid–liquid extraction method and low temperature purification (LLE–LTP) for pesticide residue analysis in honey samples by gas chromatography. Food Control 21:1307–1311

    Google Scholar 

  96. Sobhanzadeh E, Abu Bakar NK, Abas MRB, Nemati K (2011) Low temperature followed by matrix solid-phase dispersion–sonication procedure for the determination of multiclass pesticides in palm oil using LC–ToF-MS. J Hazard Mater 186:1308–1313

    CAS  Google Scholar 

  97. Li YB, Dong FS, Liu XG, Xu J, Li J, Kong ZQ, Chen X, Zheng YQ (2012) Enantioselective determination of triazole fungicide tebuconazole in vegetables, fruits, soil and water by chiral liquid chromatography/tandem mass spectrometry. J Sep Sci 35:206–215

    CAS  Google Scholar 

  98. Wille K, Kiebooms JAL, Claessens M, Rappe K, Vanden Bussche J, Noppe H, Van Praet N, De Wulf E, Van Caeter P, Janssen CR, De Brabander HF, Vanhaecke L (2011) Development of analytical strategies using U-HPLC–MS–MS and LC–ToF-MS for the quantification of micropollutants in marine organisms. Anal Bioanal Chem 400:1459–1472

    CAS  Google Scholar 

  99. Satpathy G, Tyagi YK, Gupta RK (2011) A novel optimised and validated method for analysis of multi-residues of pesticides in fruits and vegetables by microwave-assisted extraction (MAE)–dispersive solid-phase extraction (d-SPE)–retention time locked (RTL)-gas chromatography–mass spectrometry with Deconvolution reporting software (DRS). Food Chem 127:1300–1308

    CAS  Google Scholar 

  100. Zhao PY, Wang L, Zhou L, Zhang FZ, Kang S, Pan CP (2012) Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A 1225:17–25

    CAS  Google Scholar 

  101. Kruve A, Haapala M, Saarela V, Franssila S, Kostiainen R, Kotiaho T, Ketola RA (2011) Feasibility of capillary liquid chromatography–microchip-atmospheric pressure photoionization-mass spectrometry for pesticide analysis in tomato. Anal Chim Acta 696:77–83

    CAS  Google Scholar 

  102. Buonasera K, D’Orazio G, Fanali S, Dugo P, Mondello L (2009) Separation of organophosphorus pesticides by using nano-liquid chromatography. J Chromatogr A 1216:3970–3976

    CAS  Google Scholar 

  103. Lacina O, Urbanova J, Poustka J, Hajslova J (2010) Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography–time-of-flight mass spectrometry. J Chromatogr A 1217:648–659

    CAS  Google Scholar 

  104. Li YB, Dong FS, Liu XG, Xu J, Li J, Kong ZQ, Chen X, Liang XY, Zheng YQ (2012) Simultaneous enantioselective determination of triazole fungicides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Chromatogr A 1224:51–60

    CAS  Google Scholar 

  105. Wang GM, Dai H, Li YG, Li XL, Zhang JZ, Zhang L, Fu YY, Li ZG (2010) Simultaneous determination of residues of trichlorfon and dichlorvos in animal tissues by LC–MS–MS. Food Add Contam A 27:983–988

    CAS  Google Scholar 

  106. Shi XM, Jin F, Huang YT, Du XW, Li CM, Wang M, Shao H, Jin MJ, Wang J (2012) Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography–tandem mass spectrometry. J Agric Food Chem 60:60–65

    CAS  Google Scholar 

  107. Qian MR, Wu LQ, Zhang H, Xu MF, Li R, Wang XY, Sun CX (2012) Determination of 16 insect growth regulators in edible Chinese traditional herbs by liquid chromatography electrospray tandem mass spectrometry. Anal Bioanal Chem 402:2451–2462

    CAS  Google Scholar 

  108. Martel AC, Lair C (2011) Validation of a highly sensitive method for the determination of neonicotinoid insecticides residues in honeybees by liquid chromatography with electrospray tandem mass spectrometry. Int J Environ Anal Chem 91:978–988

    CAS  Google Scholar 

  109. Matsuoka T, Akiyama Y, Mitsuhashi T (2011) Validation of multi-residue method for determination of pesticides in meat products using official guideline of analytical methods in Japan. J Pest Sci 36:73–78

    CAS  Google Scholar 

  110. Sack C, Smoker M, Chamkasem N, Thompson R, Satterfield G, Masse C, Mercer G, Neuhaus B, Cassias I, Chang E, Lin Y, MacMahon S, Wong J, Zhang K, Smith RE (2011) Collaborative validation of the QuEChERS procedure for the determination of pesticides in food by LC–MS–MS. J Agric Food Chem 59:6383–6411

    CAS  Google Scholar 

  111. Pico Y, Farre M, Tokman N, Barcelo D (2008) Rapid and sensitive ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry for the quantification of amitraz and identification of its degradation products in fruits. J Chromatogr A 1203:36–46

    CAS  Google Scholar 

  112. Mezcua M, Malato O, Martinez-Uroz MA, Lozano A, Agüera A, Fernandez-Alba AR (2011) Evaluation of relevant time-of-flight-MS parameters used in HPLC/MS full-scan screening methods for pesticide residues. J AOAC Int 94:1674–1684

    CAS  Google Scholar 

  113. Hernandez F, Sancho JV, Ibanez M, Grimalt S (2008) Investigation of pesticide metabolites in food and water by LC–ToF-MS. Trends Anal Chem 27:862–872

    CAS  Google Scholar 

  114. Koesukwiwat U, Lehotay SJ, Leepipatpiboon N (2011) Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J Chromatogr A 1218:7039–7050

    CAS  Google Scholar 

  115. Lu JL (2011) Insecticide residues in eggplant fruits, soil, and water in the largest eggplant-producing area in the Philippines. Water Air Soil Pollut 220:413–422

    CAS  Google Scholar 

  116. Yang X, Zhang H, Liu Y, Wang J, Zhang YC, Dong AJ, Zhao HT, Sun CH, Cui J (2011) Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: determination of 88 pesticides in berries using SPE and GC–MS. Food Chem 127:855–865

    CAS  Google Scholar 

  117. Yu S, Xu XM (2012) Study of matrix-induced effects in multi-residue determination of pesticides by online gel permeation chromatography–gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 26:963–977

    CAS  Google Scholar 

  118. Patil SH, Banerjee K, Dasgupta S, Oulkar DP, Patil SB, Jadhav MR, Savant RH, Adsule PG, Deshmukh MB (2009) Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography–time-of-flight mass spectrometry. J Chromatogr A 1216:2307–2319

    CAS  Google Scholar 

  119. Schurek J, Portoles T, Hajslova J, Riddellova K, and Hernandez F (2008) Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal Chim Acta 611:163–172

    Google Scholar 

  120. Cochran J (2008) Evaluation of comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry for the determination of pesticides in tobacco. J Chromatogr A 1186:202–210

    CAS  Google Scholar 

  121. Martinez-Uroz MA, Mezcua M, Valles NB, Fernandez-Alba AR (2012) Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and mu-ECD in fruit and vegetable matrices. Anal Bioanal Chem 402:1365–1372

    CAS  Google Scholar 

  122. Santalad A, Srijaranai S, Burakham R (2012) Reversed electrode polarity stacking sample preconcentration combined with micellar electrokinetic chromatography for the analysis of carbamate insecticide residues in fruit juices. Food Anal Met 5:96–103

    Google Scholar 

  123. Juan-Garcia A, Font G, Juan C, Pico Y (2010) Pressurised liquid extraction and capillary electrophoresis–mass spectrometry for the analysis of pesticide residues in fruits from Valencian markets, Spain. Food Chem 120:1242–1249

    CAS  Google Scholar 

  124. Wu W, Wu Y, Zheng M, Yang L, Wu X, Lin X, Xie Z (2010) Pressurized capillary electrochromatography with indirect amperometric detection for analysis of organophosphorus pesticide residues. Analyst 135:2150–2156

    CAS  Google Scholar 

  125. Qian G, Wang L, Wu Y, Zhang Q, Sun Q, Liu Y, Liu F (2009) A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorus pesticides chlorpyrifos-methyl in real samples. Food Chem 117:364–370

    CAS  Google Scholar 

  126. Parra J, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2012) Generation of anti-azoxystrobin monoclonal antibodies from regioisomeric haptens functionalized at selected sites and development of indirect competitive immunoassays. Anal Chim Acta 715:105–112

    CAS  Google Scholar 

  127. Mercader JV, Parra J, Esteve-Turrillas FA, Agullo C, Abad-Somovilla A, and Abad-Fuentes A (2012) Development of monoclonal antibody-based competitive immunoassays for the detection of picoxystrobin in cereal and oilseed flours. Food Control 26:162–168

    Google Scholar 

  128. Esteve-Turrillas FA, Abad-Fuentes A, Mercader JV (2011) Determination of fenhexamid residues in grape must, kiwifruit, and strawberry samples by enzyme-linked immunosorbent assay. Food Chem 124:1727–1733

    CAS  Google Scholar 

  129. Zhang Q, Sun Q, Hu B, Shen Q, Yang G, Liang X, Sun X, Liu F (2008) Development of a sensitive ELISA for the analysis of the organophosphorus insecticide fenthion in fruit samples. Food Chem 106:1278–1284

    CAS  Google Scholar 

  130. Xu ZL, Deng H, Deng XF, Yang JY, Jiang YM, Zeng DP, Huang F, Shen YD, Lei HT, Wang H, Sun YM (2012) Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody-based direct competitive ELISA followed by HPLC–MS–MS. Food Chem 131:1569–1576

    CAS  Google Scholar 

  131. Liu Y, Lou Y, Xu D, Qian G, Zhang Q, Wu R, Hu B, Liu F (2009) Production and characterization of monoclonal antibody for class-specific determination of O, O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity. Microchem J 93:36–42

    CAS  Google Scholar 

  132. Wang L, Zhang LJ, Lv W, Han SH, Zhang FK, Pan JR (2011) Determination of organophosphorus pesticides based on biotin-avidin enzyme-linked immunosorbent assay. Chinese J Anal Chem 39:346–350

    CAS  Google Scholar 

  133. Mulchandani A, Rajesh (2011) Microbial biosensors for organophosphate pesticides. App Biochem Biotech 165:687–699

    CAS  Google Scholar 

  134. Raghu P, Reddy TM, Swamy BEK, Chandrashekar BN, Reddaiah K, Sreedhar M (2012) Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: a cyclic voltammetric study. J Electroanal Chem 665:76–82

    CAS  Google Scholar 

  135. Mishra RK, Dominguez RB, Bhand S, Munoz R, Marty JL (2012) A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosens Bioelectron 32:56–61

    CAS  Google Scholar 

  136. Campanella L, Eremin S, Lelo D, Martini E, Tomassetti M (2011) Reliable new immunosensor for atrazine pesticide analysis. Sens Actuator B-Chem 156:50–62

    Google Scholar 

  137. Ge SG, Lu JJ, Ge L, Yan M, Yu JH (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta 79:1704–1709

    CAS  Google Scholar 

  138. Li H, Wang ZH, Wu BW, Liu XH, Xue ZH, Lu XQ (2012) Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor. Electrochim Acta 62:319–326

    CAS  Google Scholar 

  139. Avila M, Zougagh M, Rios A, Escarpa A (2008) Molecularly imprinted polymers for selective piezoelectric sensing of small molecules. Trends Anal Chem 27:54–65

    CAS  Google Scholar 

  140. Bi XY, Yang KL (2009) On-line monitoring imidacloprid and thiacloprid in celery juice using quartz crystal microbalance. Anal Chem 81:527–532

    CAS  Google Scholar 

  141. Bachmann TT, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 15:193–201

    CAS  Google Scholar 

  142. Liu N, Su P, Zhu MX, Yang ZH, Pan XJ, Wang HY, Chao FH, Gao ZX (2010) High-throughput suspension array technology for simultaneous detection of multiple pesticide and veterinary drug residues. Chinese J Anal Chem 38:673–677

    CAS  Google Scholar 

  143. Rios A, Zougagh M, Avila M (2012) Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal Chim Acta 740:1–11

    Google Scholar 

  144. Alonso GA, Istamboulie G, Ramirez-Garcia A, Noguer T, Marty JL, Muñoz R (2010) Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response. Comput Electron Agric 74:223–229

    Google Scholar 

  145. Miro M, Hansen EH (2012) Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences: A critical review. Anal Chim Acta

  146. Seidel M, Gauglitz G (2003) Miniaturization and parallelization of fluorescence immunoassays in nanotiter plates. Trends Anal Chem 22:385–394

    CAS  Google Scholar 

  147. Cajka T, Riddellova K, Zomer P, Mol H, Hajslova J (2011) Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry. Food Add Contam A 28:1372–1382

    CAS  Google Scholar 

  148. Schurek J, Vaclavik L, Hooijerink H, Lacina O, Poustka J, Sharman M, Caldow M, Nielen MWF, Hajslova J (2008) Control of strobilurin fungicides in wheat using direct analysis in real time accurate time-of-flight and desorption electrospray ionization linear ion trap mass spectrometry. Anal Chem 80:9567–9575

    CAS  Google Scholar 

  149. Hajslova J, Cajka T, Vaclavik L (2011) Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Anal Chem 30:204–218

    CAS  Google Scholar 

  150. Liu XG, Wang X, Xu J, Dong FS, Song WC, Zheng YQ (2011) Determination of tebuconazole, trifloxystrobin and its metabolite in fruit and vegetables by a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method using gas chromatography with a nitrogen–phosphorus detector and ion trap mass spectrometry. Biomed Chromatogr 25:1081–1090

    CAS  Google Scholar 

  151. Wu QH, Li Z, Wang C, Wu CX, Wang WN, Wang Z (2011) Dispersive solid-phase extraction clean-up combined with dispersive liquid–liquid microextraction for the determination of neonicotinoid insecticides in vegetable samples by high-performance liquid chromatography. Food Anal Met 4:559–566

    Google Scholar 

  152. Zhou S, Chen HX, Wu B, Ma C, Ye Y (2012) Sensitive determination of carbamates in fruit and vegetables by a combination of solid-phase extraction and dispersive liquid–liquid microextraction prior to HPLC. Microchim Acta 176:419–427

    CAS  Google Scholar 

  153. Cortes JM, Vazquez A, Santa-Maria G, Blanch GP, Villen J (2009) Pesticide residue analysis by RPLC–GC in lycopene and other carotenoids obtained from tomatoes by supercritical fluid extraction. Food Chem 113:280–284

    CAS  Google Scholar 

  154. Padula DJ, Madigan TL, Nowak BF (2012) Australian farmed Yellowtail Kingfish (Seriola lalandi) and Mulloway (Argyrosomus hololepidotus): residues of metallic, agricultural and veterinary chemicals, dioxins and polychlorinated biphenyls. Chemosphere 86:709–717

    CAS  Google Scholar 

  155. Hoai PM, Sebesvari Z, Minh TB, Viet PH, Renaud FG (2011) Pesticide pollution in agricultural areas of Northern Vietnam: case study in Hoang Liet and Minh Dai communes. Environ Pollut 159:3344–3350

    CAS  Google Scholar 

  156. de Solla SR, Martin PA (2011) Absorption of current use pesticides by snapping turtle (Chelydra serpentina) eggs in treated soil. Chemosphere 85:820–825

    Google Scholar 

  157. Biales AD, Bencic DC, Villeneuve DL, Ankley GT, Lattier DL (2011) Proteomic analysis of zebrafish brain tissue following exposure to the pesticide prochloraz. Aquat Toxicol 105:618–628

    CAS  Google Scholar 

  158. Hoang TC, Rand GM, Gardinali PR, Castro J (2011) Bioconcentration and depuration of endosulfan sulfate in mosquito fish (Gambusia affinis). Chemosphere 84:538–543

    CAS  Google Scholar 

  159. Ragland JM, Arendt MD, Kucklick JR, Keller JM (2011) Persistent organic pollutants in blood plasma of satellite-tracked adult male loggerhead sea turtles (Caretta caretta). Environ Toxicol Chem 30:1549–1556

    CAS  Google Scholar 

  160. Jacomini AE, de Camargo PB, Avelar WEP, Bonato PS (2011) Assessment of ametryn contamination in river water, river sediment, and mollusk bivalves in Sao Paulo State, Brazil. Arch Environ Contam Toxicol 60:452–461

    CAS  Google Scholar 

  161. Snyder EH, O’Connor GA, Mcavoy DC (2011) Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms. Chemosphere 82:460–467

    CAS  Google Scholar 

  162. Huang QY, Huang L, Huang HQ (2011) Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain. Compar Biochem Physiol C 153:67–74

    Google Scholar 

  163. Shaw M, Furnas MJ, Fabricius K, Haynes D, Carter S, Eaglesham G, Mueller JF (2010) Monitoring pesticides in the Great Barrier Reef. Mar Pollut Bull 60:113–122

    CAS  Google Scholar 

  164. Lavado R, Rimoldi JM, Schlenk D (2009) Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments. Toxicol App Pharmacol 235:143–152

    CAS  Google Scholar 

  165. Marcogliese DJ, King KC, Salo HM, Fournier M, Brousseau P, Spear P, Champoux L, McLaughlin JD, Boily M (2009) Combined effects of agricultural activity and parasites on biomarkers in the bullfrog, Rana catasbeiana. Aquat Toxicol 91:126–134

    CAS  Google Scholar 

  166. Suri CR, Boro R, Nangia Y, Gandhi S, Sharma P, Wangoo N, Rajesh K, Shekhawat GS (2009) Immunoanalytical techniques for analyzing pesticides in the environment. Trends Anal Chem 28:29–39

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Innovation through the project Consolider-Ingenio 2010 “Assessing and predicting effects on water quantity and quality in Iberian rivers caused by global change” (CSD2009-00065) and the project of I + R + I “Recovering curiosity in environmental science: A global approximation of the environmental forensics applied to the Turia River Basin” (CGL2011-29703-C02-01 and CGL2011-29703-C02-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó.

Additional information

Published in the topical collection Emerging Contaminants in Biota with guest editors Yolanda Picó and Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreu, V., Picó, Y. Determination of currently used pesticides in biota. Anal Bioanal Chem 404, 2659–2681 (2012). https://doi.org/10.1007/s00216-012-6331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6331-x

Keywords

Navigation