Skip to main content
Log in

Optical sensors with molecularly imprinted nanospheres: a promising approach for robust and label-free detection of small molecules

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecularly imprinted nanospheres obtained by miniemulsion polymerization have been applied as the sensitive layer for label-free direct optical sensing of small molecules. Using these particles as the sensitive layer allowed for improving response times in comparison to sensors using MIP layers. As a model compound, well-characterized nanospheres imprinted against l-Boc-phenylalanine anilide (l-BFA) were chosen. For immobilization, a simple concept based on electrostatic adsorption was used, showing its applicability to different types of surfaces, leading to a good surface coverage. The sensor showed short response times, good selectivity, and high reversibility with a limit of detection down to 60 μM and a limit of quantitation of 94 μM. Furthermore, reproducibility, selectivity, and long-term stability of the sensitive layers were tested. The best results were achieved with an adsorption on aminopropylsilane layers, showing a chip-to-chip reproducibility of 22%. Furthermore, the sensors showed no loss in signal after a storage time of 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fechner P, Pröll F, Albrecht C, Gauglitz G (2011) Anal Bioanal Chem 400:729–735

    Article  CAS  Google Scholar 

  2. Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J (2011) Biochem J 436:1–13

    Article  CAS  Google Scholar 

  3. Albrecht C, Fechner P, Honcharenko D, Baltzer L, Gauglitz G (2010) Biosens Bioelectron 25:2302–2308

    Article  CAS  Google Scholar 

  4. Wulff G (1995) Angew Chem Int Edn 34:1812–1832

    Article  CAS  Google Scholar 

  5. Mosbach K (1994) Trends Biochem Sci 19:9–14

    Article  CAS  Google Scholar 

  6. Delaney TL, Zimin D, Rahm M, Weiss D, Wolfbeis OS, Mirsky VM (2007) Anal Chem 79:3220–3225

    Article  CAS  Google Scholar 

  7. Brüggemann O, Haupt K, Ye L, Yilmaz E, Mosbach K (2000) J Chrom A 889:15–24

    Article  Google Scholar 

  8. Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Macromol Chem Phys 203:1965–1973

    Article  CAS  Google Scholar 

  9. Henry OYF, Cullen DC, Piletsky SA (2005) Anal Bioanal Chem 382:947–956

    Article  CAS  Google Scholar 

  10. Moreno-Bondi MC, Navarro-Villoslada F, Ito-Pena E, Urraca JL (2008) Curr Anal Chem 4:316–340

    Article  CAS  Google Scholar 

  11. Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner APF (2004) Biosens Bioelectron 20:145–152

    Article  CAS  Google Scholar 

  12. Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2005) Anal Chem 77:4282–4285

    Article  CAS  Google Scholar 

  13. Hänel C, Gauglitz G (2002) Anal Bioanal Chem 372:91–100

    Article  Google Scholar 

  14. Nopper D, Lammershop O, Wulff G, Gauglitz G (2003) Anal Bioanal Chem 377:608–613

    Article  CAS  Google Scholar 

  15. Belmont AS, Jaeger S, Knopp D, Niessner R, Gauglitz G, Haupt K (2007) Biosens Bioelectron 22:3267–3272

    Article  CAS  Google Scholar 

  16. O’Shannessy DJ, Br E, Mosbach K (1989) Anal Biochem 177:144–149

    Article  Google Scholar 

  17. Weber A, Dettling M, Brunner H, Tover GEM (2002) Macromol Rapid Comm 23:824–828

    Article  CAS  Google Scholar 

  18. Mohrle BP, Kumpf M, Gauglitz G (2005) Analyst 130:1634–1638

    Article  Google Scholar 

  19. Lehmann M, Dettling M, Brunner H, Tovar GEM (2004) J Chrom B 808:43–50

    Article  CAS  Google Scholar 

  20. Asenath Smith E, Chen W (2008) Langmuir 24:12405–12409

    Article  CAS  Google Scholar 

  21. Mehne J, Markovic G, Pröll F, Schweizer N, Zorn S, Schreiber F, Gauglitz G (2008) Anal Bioanal Chem 391:1783–1791

    Article  CAS  Google Scholar 

  22. Tovar G, Kräuter I, Gruber C (2003) Top Curr Chem Springer Berlin/Heidelberg

Download references

Acknowledgment

The work presented in this paper was funded by the “Biomimetischer Prozesssensor” research project funded by the Ministry of Science and Culture (Ministerium für Wissenschaft und Kultur), Baden Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kolarov.

Additional information

Published in the topical collection Biomimetic Recognition Elements for Sensing Applications with guest editor María Cruz Moreno-Bondi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 31.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolarov, F., Niedergall, K., Bach, M. et al. Optical sensors with molecularly imprinted nanospheres: a promising approach for robust and label-free detection of small molecules. Anal Bioanal Chem 402, 3245–3252 (2012). https://doi.org/10.1007/s00216-011-5592-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5592-0

Keywords

Navigation