Skip to main content
Log in

A liquid drop RC filter apparatus for detection

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new analytical detector based on a liquid drop resistor–capacitor (RC) filter is described, in which transformed gain vs. frequency curves are used to analyze compounds. This detector can be used to detect either charged or neutral species (that are dielectrically different) which are dissolved in a liquid (e.g., water, alcohol, solvent mixtures, etc.). This device was fabricated by modifying an electrowetting on dielectric (EWOD)-based experimental setup. When a liquid drop is placed on a dielectric surface, the system acts as a RC filter. At a given frequency, gain is a function of conductivity, surface tension, dielectric constant, double-layer thickness of the solid–liquid drop interface, as well as the applied voltage. Since different liquids and solutions have different physical properties, each liquid/solution has a unique curve (peak) in gain vs. frequency plot. This is the basic principle behind the detector. Different amounts of zinc chloride dissolved in water, benzalkonium chloride in water, 1-methylimidazole in water, cetyltrimethyl-ammonium chloride (CTAC) in water, and CTAC dissolved in ethylene glycol solutions were tested with the detector as proof of principle. The device can be used as a stand-alone detector or can easily be coupled with droplet based microfluidic lab-on-a-chip systems such as EWOD-based microfluidic chips.

The liquid drop RC filter apparatus and obtained curves for CTAC standard solutions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nanayakkara YS, Moon H, Armstrong DW (2010) ACS Appl Mater Interfaces 2:1785–1787

    Article  CAS  Google Scholar 

  2. Nanayakkara YS, Perera S, Bindiganavale S, Wanigasekara E, Moon H, Armstrong DW (2010) Anal Chem 82:3146–3154

    Article  CAS  Google Scholar 

  3. Cordella C (2010) Actual Chim 345:13–18

    CAS  Google Scholar 

  4. Kumar A, Pluntke M, Cross B, Baret J-C, Mugele F (2005) Finite conductivity effects and apparent contact angle saturation in AC electrowetting. In: Proceedings of the Materials Research Society Fall Meeting, Boston, USA, Nov 2005

  5. Jones TB, Wang K, Yao D (2004) Langmuir 20:2813–2818

    Article  CAS  Google Scholar 

  6. Jones TB (2002) Langmuir 18:4437–4443

    Article  CAS  Google Scholar 

  7. Zeng J, Korsmeyer T (2004) Lab Chip 4:265–277

    Article  CAS  Google Scholar 

  8. Chatterjee D, Shepherd H, Garrell RL (2009) Lab Chip 9:1219–1229

    Article  CAS  Google Scholar 

  9. BENZALKONIUM CHLORIDE || Skin Deep Cosmetics Database | Environmental Working Group (2011). Available from www.ewg.org Accessed 8/5/2011

  10. Prince SJ, McLaury H, Allen LV, McLaury P (1999) J Pharm Biomed Anal 19:877–882

    Article  CAS  Google Scholar 

  11. United States Pharmacopeia 23/National Formulary 18 (1995) US Pharmacopeial Convention, Inc., Maryland, pp. 2218–2219

  12. CETRIMONIUM CHLORIDE || Skin Deep Cosmetics Database | Environmental Working Group (2011). Available from www.ewg.org Accessed 8/5/2011

  13. Terol A, Gomez-Mingot M, Maestre SE, Prats S, Todoli JL, Paredes E (2010) Int J Cosmet Sci 32:65–72

    Article  CAS  Google Scholar 

  14. Anderson DJ (1989) Clin Chem 35:2152–2153

    CAS  Google Scholar 

  15. Schreiner C, Zugmann S, Hartl R, Gores HJ (2010) J Chem Eng Data 55:1784–1788

    Article  CAS  Google Scholar 

  16. Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tárnok A (2010) Cytometry Part A 77A:648–666

    Article  CAS  Google Scholar 

  17. Agilent Technologies (2006) Agilent impedance measurement handbook: a guide to measurement technology and techniques. Agilent Technologies, Santa Clara

  18. Ren H, Fair RB, Pollack MG (2004) Sens Actuators B B98:319–327

    Article  CAS  Google Scholar 

  19. Gong J, Kim C (2008) Lab Chip 8:898–906

    Article  CAS  Google Scholar 

  20. Shih SCC, Fobel R, Kumar P, Wheeler AR (2011) Lab Chip 11:535–540

    Article  CAS  Google Scholar 

  21. Mugele F, Baret J (2005) J Phys Condens Matter 17:R705–R774

    Article  CAS  Google Scholar 

  22. Wijethunga PAL, Nanayakkara YS, Kunchala P, Armstrong DW, Moon H (2011) Anal Chem 83:1658–1664, Washington, DC, USA

    Article  CAS  Google Scholar 

  23. Widegren JA, Saurer EM, Marsh KN, Magee JW (2005) J Chem Thermodyn 37:569–575

    Article  CAS  Google Scholar 

  24. Nanayakkara YS, Moon H, Payagala T, Wijeratne AB, Crank JA, Sharma PS, Armstrong DW (2008) Anal Chem 80:7690–7698

    Article  CAS  Google Scholar 

  25. Millefiorini S, Tkaczyk AH, Sedev R, Efthimiadis J, Ralston J (2006) J Am Chem Soc 128:3098–3101

    Article  CAS  Google Scholar 

  26. Moon H, Cho SK, Garrell RL, Kim CJ (2002) J Appl Phys 92:4080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Hyejin Moon for allowing the authors to use her laboratory and Robert A. Welch Foundation (Y0026) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanayakkara, Y.S., Armstrong, D.W. A liquid drop RC filter apparatus for detection. Anal Bioanal Chem 401, 2669–2678 (2011). https://doi.org/10.1007/s00216-011-5426-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5426-0

Keywords

Navigation