Skip to main content

Advertisement

Log in

Isolation and sequence analysis of peptides from the skin secretion of the Middle East tree frog Hyla savignyi

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel peptides were identified in the skin secretion of the tree frog Hyla savignyi. Skin secretions were collected by mild electrical stimulation. Peptides were separated by reversed-phase high-performance liquid chromatography. Mass spectra were acquired by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), and fragment ion spectra were obtained after collision-induced dissociation and electron capture dissociation. Peptides were analyzed by manual de novo sequencing and composition-based sequencing (CBS). Sequence analyses of three so far undescribed, structurally unrelated peptides are presented in this paper, having the sequences DDSEEEEVE-OH, P*EEVEEERJK-OH, and GJJDPJTGJVGGJJ-NH2. The glutamate-rich sequences are assumed to be acidic spacer peptides of the prepropeptide. One of these peptides contains the modified amino acid hydroxyproline, as identified and localized by high-accuracy FTICR-MS. Combination of CBS and of experience-based manual sequence analysis as complementary and database-independent sequencing strategies resulted in peptide identification with high reliability.

So-far unknown natural frog skin peptides were identified by high-resolution CID and ECD MS/MS and by composition-based de novo sequencing. Sequences were confirmed by comparison of MS/MS spectra with synthesized analogs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erspamer V, Erspamer GF, Mazzanti G, Endean R (1984) Active peptides in the skins of one hundred amphibian species from Australia and Papua New Guinea. Comp Biochem Physiol 77C:99–108

    CAS  Google Scholar 

  2. Erspamer V, Erspamer GF, Cei JM (1986) Active peptides in the skins of two hundred and thirty American amphibian species. Comp Biochem Physiol 85C:125–137

    CAS  Google Scholar 

  3. Habermehl G (1969) Chemie und Biochemie von Amphibiengiften. Naturwissenschaften 56:615–622

    Article  CAS  Google Scholar 

  4. Gomes A, Giri B, Saha A, Mishra R, Dasgupta SC, Debnath A, Gomes A (2007) Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development. Indian J Exp Biol 45:579–593

    CAS  Google Scholar 

  5. Li J, Xu X, Xu C, Zhou W, Zhang K, Yu H, Zhang Y, Zheng Y, Rees HH, Lai R, Yang D, Wu J (2007) Anti-infection peptidomics of amphibian skin. Mol Cell Proteomics 6:882–894

    Article  CAS  Google Scholar 

  6. Nascimento ACC, Fontes W, Sebben A, Castro MS (2003) Antimicrobial peptides from anurans skin secretions. Prot Pep Lett 10:227–238

    Article  CAS  Google Scholar 

  7. Simmaco M, Mignogna G, Barra D (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47:435–450

    Article  CAS  Google Scholar 

  8. VanCompernolle SE, Taylor RJ, Oswald-Richter K, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, KewalRamani VN, Rollins-Smith LA, Unutmaz D (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 79:11598–11606

    Article  CAS  Google Scholar 

  9. Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323:268–275

    Article  CAS  Google Scholar 

  10. Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anticancer Drugs 19:931–939

    Article  CAS  Google Scholar 

  11. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  Google Scholar 

  12. Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10

    Article  CAS  Google Scholar 

  13. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  14. Matyus E, Kandt C, Tieleman DP (2007) Computer simulation of antimicrobial peptides. Curr Med Chem 14:2789–2798

    Article  CAS  Google Scholar 

  15. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592

    Article  CAS  Google Scholar 

  16. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  Google Scholar 

  17. Koczulla AR, Bals R (2003) Antimicrobial peptides. Drugs 63:389–406

    Article  CAS  Google Scholar 

  18. Gordon YJ, Romanowski EG (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515

    Article  CAS  Google Scholar 

  19. Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ (2006) Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 23:368–393

    Article  CAS  Google Scholar 

  20. Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054

    Article  CAS  Google Scholar 

  21. Langsdorf M, Ghassempour A, Roempp A, Spengler B (2010) Characterization of a peptide family from the skin secretion of the middle east tree frog Hyla savignyi by composition-based de novo sequencing using positive and negative ion mass spectrometry. Rapid Commun Mass Spectrom. doi:10.1002/rcm.4717

  22. Steinborner ST, Wabnitz PA, Waugh RJ, Bowie JH, Gao CW, Tyler MJ, Wallace JC (1996) The structures of new peptides from the Australian red tree frog ‘Litoria rubella’. The skin peptide profile as a probe for the study of evolutionary trends of amphibians. Aust J Chem 49:955–963

    Article  CAS  Google Scholar 

  23. Wabnitz PA, Bowie JH, Wallace JC, Tyler MJ (1999) Peptides from the skin glands of the Australian buzzing tree frog Litoria electrica. Comparison with the skin peptides of the red tree frog Litoria rubella. Aust J Chem 52:639–645

    Article  CAS  Google Scholar 

  24. Renda T, D’Este L, Buffa R, Usellini L, Capella C, Vaccaro R, Melchiorri P (1985) Tryptophyllin-like immunoreactivity in rat adenohypophysis. Peptides 6:197–202

    Article  CAS  Google Scholar 

  25. Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev 14:49–73

    Article  CAS  Google Scholar 

  26. Horn DM, Zubarev RA, McLafferty FW (2000) Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. PNAS 97:10313–10317

    Article  CAS  Google Scholar 

  27. Samgina TY, Artemenko AK, Gorshkov VA, Poljakov NB, Lebedev AT (2008) Oxidation versus carboxamidomethylation of S–S bond in Ranid frog peptides: pro and contra for de novo MALDI-MS sequencing. J Am Soc Mass Spectrom 19:479–487

    Article  CAS  Google Scholar 

  28. Chen W, Lee PJ, Shion H, Ellor N, Gebler JC (2007) Improving de novo sequencing of peptides using a charged tag and C-terminal digestion. Anal Chem 79:1583–1590

    Article  CAS  Google Scholar 

  29. Thieu VA, Kirsch D, Flad T, Mueller C, Spengler B (2006) Direct protein identification from nonspecific peptide pools by high-accuracy MS data filtering. Angew Chem Int Ed 45:3317–3319

    Article  CAS  Google Scholar 

  30. Spengler B, Luetzenkirchen F, Metzger S, Chaurand P, Kaufmann R, Jeffery W, Bartlet-Jones M, Pappin DJC (1997) Peptide sequencing of charged derivatives by postsource decay MALDI mass spectrometry. Int J Mass Spectrom Ion Process 169/170:127–140

    Article  CAS  Google Scholar 

  31. Harrison AG, Young AB, Bleiholder C, Suhai S, Paizs B (2006) Scrambling of sequence information in collision-induced dissociation of peptides. J Am Chem Soc 128:10364–10365

    Article  CAS  Google Scholar 

  32. Jia C, Qi W, He Z (2007) Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues. J Am Soc Mass Spectrom 18:663–678

    Article  CAS  Google Scholar 

  33. Unnithan AG, Myer MJ, Veale CJ, Danell AS (2007) MS/MS of protonated polyproline peptides: the influence of N-terminal protonation on dissociation. J Am Soc Mass Spectrom 18:2198–2203

    Article  CAS  Google Scholar 

  34. Harrison AG, Young AB (2005) Fragmentation reactions of deprotonated peptides containing proline. The proline effect. J Mass Spectrom 40:1173–1186

    Article  CAS  Google Scholar 

  35. Grewal RN, El Aribi H, Harrison AG, Siu KWM, Hopkinson AC (2004) Fragmentation of protonated tripeptides: the proline effect revisited. J Phys Chem B 108:4899–4908

    Article  CAS  Google Scholar 

  36. Schwartz BL, Bursey MM (1992) Some proline substituent effects in the tandem mass spectrum of protonated pentaalanine. Biol Mass Sectrom 21:92–96

    Article  CAS  Google Scholar 

  37. Kaufmann R, Chaurand P, Kirsch D, Spengler B (1996) Post-source decay and delayed extraction in matrix-assisted laser desorption/ionization-reflectron time-of-flight mass spectrometry. Are there trade-offs? Rapid Commun Mass Spectrom 10:1199–1208

    Article  CAS  Google Scholar 

  38. Spengler B (2004) De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 15:703–714

    Article  CAS  Google Scholar 

  39. Roepstorff P, Fohlmann J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  40. Johnson RS, Martin SA, Biemann K (1988) Collision-induced fragmentation of (M+H)+ ions of peptides. Side chain specific sequence ions. Int J Mass Spectrom Ion Proc 86:137–154

    Article  CAS  Google Scholar 

  41. Schlosser A, Lehmann WD (2002) Patchwork peptide sequencing: extraction of sequence information from accurate mass data of peptide tandem mass spectra recorded at high resolution. Proteomics 2:524–533

    Article  CAS  Google Scholar 

  42. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  CAS  Google Scholar 

  43. Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Faraham Ahmadzadeh and Hossein Hashempour from Shahid Beheshti University, Tehran, for collecting the skin secretions. Financial support by the Deutsche Forschungsgemeinschaft (DFG, Sp314/10-1) and by the Bundesministerium für Bildung und Forschung (BMBF, NGFN project 0313442) is gratefully acknowledged.

This publication represents a component of the doctoral (Dr. rer. nat.) thesis of Markus Langsdorf in the Faculty of Biology and Chemistry at the Justus Liebig University Giessen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Spengler.

Additional information

Published in the special issue Mass Spectrometry (DGMS 2010) with Guest Editors Andrea Sinz and Jürgen Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langsdorf, M., Ghassempour, A., Römpp, A. et al. Isolation and sequence analysis of peptides from the skin secretion of the Middle East tree frog Hyla savignyi . Anal Bioanal Chem 398, 2853–2865 (2010). https://doi.org/10.1007/s00216-010-4131-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4131-8

Keywords

Navigation