Skip to main content
Log in

Fourier transform infrared spectroscopy as a tool to study structural properties of cytochromes P450 (CYPs)

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome P450 proteins (CYPs) are a big class of heme proteins which are involved in various metabolic processes of living organisms. CYPs are the terminal catalytically active components of monooxygenase systems where the substrate binds and is hydroxylated. In order to be functionally competent, the protein structures of CYPs possess specific properties that must be explored in order to understand structure–function relationships and mechanistic aspects. Fourier transform infrared spectroscopy (FTIR) is one tool that is used to study these structural properties. The application of FTIR spectroscopy to the secondary structures of CYP proteins, protein unfolding, protein–protein interactions and the structure and dynamics of the CYP heme pocket is reviewed. A comparison with other thiolate heme proteins (nitric oxide synthase and chloroperoxidase) is also included.

The protein secondary structure, protein unfolding, redox-partner protein–protein interaction, structural changes induced by the reduction of the heme iron, and the structure and dynamics of the active site of cytochromes P450 (CYP) can be studied using Fourier transform infrared spectroscopy (FTIR). FTIR spectroscopy is a good approach for gaining a deeper insight into structure–function relationships in CYPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

CD:

Circular dichroism

CPO:

Chloroperoxidase from Caldariomyces fumago

FMN:

Flavin mononucleotide

FTIR:

Fourier transform infrared

H4B:

Tetrahydrobiopterin

HEPES:

N-(2-hydroxyethyl) piperazine-N′-(2-ethanesulfonic acid)

bsNOS:

Nitric oxide synthase from Bacillus subtilis

eNOS:

Endothelial nitric oxide synthase

iNOSox:

Oxygenase domain of inducible nitric oxide synthase

nNOSox:

Oxygenase domain of neuronal nitric oxide synthase

saNOS:

Nitric oxide synthase from Staphylococcus aureus

NAD(P)H:

Nicotinamide adenine (di)nucleotide phosphate, reduced form

NMR:

Nuclear magnetic resonance

P450:

Cytochrome P450

P450cam:

P450 from Pseudomonas putida (CYP101)

P450BMP:

The heme protein domain of P450BM-3 from Bacillus megaterium, (CYP102)

P450scc:

Cholesterol side chain cleavage P450 (CYP11A1)

P450lm2:

Microsomal P450 from rabbit (CYP2B4)

P450lm4:

Microsomal P450

P420:

Inactive form of P450

Pdx:

Putidaredoxin

References

  1. Rein H, Jung C, Ristau O, Friedrich J (1984) In: Ruckpaul K, Rein H (eds) Cytochrome P-450. Akademie-Verlag, Berlin, pp 163–249

    Google Scholar 

  2. Böhm S, Rein H, Jänig GR, Ruckpaul K (1976) Acta Biol Med Germ 35:K27–K32

    Google Scholar 

  3. Jung C (2000) J Mol Recognit 13:325–351

    CAS  Google Scholar 

  4. Jung C (2002) Biochim Biophys Acta 1595:309–328

    CAS  Google Scholar 

  5. Jung C (2007) In: Sigel A, Sigel H, Sigel KO (eds) Metal ions in life sciences, vol. 3. Wiley, Chichester, UK, pp 187–234

  6. Karyakin A, Motiejunas D, Wade RC, Jung C (2007) Biochim Biophys Acta 1770:420–431

    CAS  Google Scholar 

  7. Günzler H, Gremlich HU (2002) IR spectroscopy. Wiley-VCN Verlag GmbH, Weinheim

    Google Scholar 

  8. Griffiths PR, de Haseth JA (1986) Fourier transform infrared spectrometry. Wiley, New York

  9. Pelton JT, McLean LR (2000) Analyt Biochem 277:167–176

    CAS  Google Scholar 

  10. Surewicz WK, Mantsch HH (1996) In: Havel HA (ed) Spectroscopic methods for determining protein structure in solution. VCH, New York, pp 135–162

  11. Ingledew WJ, Smith SME, Gao YT, Jones RJ, Salerno JC, Rich PR (2005) Biochemistry 44:4238–4246

    CAS  Google Scholar 

  12. Uhmann W, Beckerm A, Taran C, Siebert F (1991) Appl Spectrosc 45:390–397

    CAS  Google Scholar 

  13. Palmer RA, Chao JL, Dittmar RM, Gregoriou VG, Plunkett SE (1993) Appl Spectrosc 47:1297–1310

    CAS  Google Scholar 

  14. Rammelsberg R, Heßling B, Chorongiewski H, Gerwert K (1997) Appl Spectrosc 51:558–562

    CAS  Google Scholar 

  15. Frauenfelder H, Alberding NA, Ansari A, Braunstein D, Cowen BR, Hong MK, Iben IET, Johnson JB, Luck S, Marden MC, Mourant J, Ormos P, Reinisch L, Scholl R, Schulte A, Shyamsunder E, Sorensen LB, Steinbach PJ, Xie A, Young RD, Yue KT (1990) J Phys Chem 94:1024–1037

    CAS  Google Scholar 

  16. Wong PTT (1987) In: During JR (ed) Vibrational spectra and structure, vol 16. Elsevier, Amsterdam, pp 357–445

  17. Heremans K (1997) In: van Eldik R, Hubbard CD (eds) Chemistry under extreme or non-classical conditions. Wiley, New York, pp 515–545

    Google Scholar 

  18. Jung C, Canny B, Chervin JC (2003) In: Winter R (ed) Advances in high-pressure biosciences and biotechnology. Springer, Heidelberg, pp 19–24

  19. Huang R, Kubelka J, Barber-Armstrong W, Silva RAGD, Decatur SM, Keiderling TA (2004) J Am Chem Soc 126:2346–2354

    CAS  Google Scholar 

  20. Schlereth DD, Mäntele W (1992) Biochemistry 31:7494–7502

    CAS  Google Scholar 

  21. Menestrina G, Cabiaux V, Tejuca M (1999) Biochem Biophys Res Commun 254:174–180

    CAS  Google Scholar 

  22. Bauknecht D, Reiter G, Hassler N, Schwarott M, Fringeli UP (2005) Chemia 59:226–235

    Google Scholar 

  23. Ataka K, Heberle J (2007) Anal Bioanal Chem 388:47–54

    CAS  Google Scholar 

  24. Arrondo JLR, Goňi FM (1999) Progr Biophys Mol Biol 72:367–405

    CAS  Google Scholar 

  25. Rahmelow K, Hübner W (1997) Appl Spectrosc 51:160–170

    CAS  Google Scholar 

  26. Tu AT (1986) In: Clark RJH, Hester RE (eds) Spectroscopy of biological systems. Wiley, New York, pp 47–112

  27. Byler DM, Susi H (1986) Biopolymers 25:469–487

    CAS  Google Scholar 

  28. Ismail AA, Mantsch HH, Wong PTT (1992) Biochim Biophys Acta 1121:183–188

    CAS  Google Scholar 

  29. Panick G, Malessa R, Winter R (1999) Biochemistry 38:6512–6519

    CAS  Google Scholar 

  30. Holloway P, Mantsch HH (1989) Biochemistry 28:931–935

    CAS  Google Scholar 

  31. Heimburg T, Schünemann J, Weber K, Geisler N (1999) Biochemistry 38:12727–12734

    CAS  Google Scholar 

  32. Witold K, Surewicz J, Mantsch HH, Chapman D (1993) Biochemistry 32:389–394

    Google Scholar 

  33. Dong A, Huang P, Caughey WS (1990) Biochemistry 29:3303–3308

    CAS  Google Scholar 

  34. Lee DC, Haris PI, Chapman D, Mitchell RC (1990) Biochemistry 29:9185–9193

    CAS  Google Scholar 

  35. Pribić R (1994) Anal Biochem 223:26–34

    Google Scholar 

  36. Rahmelow K, Hübner W (1996) Anal Biochem 241:5–13

    CAS  Google Scholar 

  37. Hering JA, Innocent PR, Haris PI (2002) Proteomics 2:839–849

    CAS  Google Scholar 

  38. Severcana M, Haris PI, Severcan F (2004) Anal Biochem 332:238–244

    Google Scholar 

  39. Susi H (1972) Methods Enzymol 26:455–472

    Google Scholar 

  40. Griebenow K, Klibanov AM (1995) Proc Natl Acad Sci USA 92:10969–10976

    CAS  Google Scholar 

  41. Baello BI, Pancoska P, Keiderling TA (1997) Anal Biochem 250:212–221

    CAS  Google Scholar 

  42. van de Weert M, Haris PI, Hennink WE, Crommelin DJA (2001) Anal Biochem 297:160–169

    Google Scholar 

  43. Barth A (2000) Progess in Biophys & Mol Biol 74:141–173

    CAS  Google Scholar 

  44. Chirgadze YuN, Fedorov OV, Trushina NP (1975) Biopolymers 14:679–694

    CAS  Google Scholar 

  45. Venyaminov SYu, Kalnin NN (1990) Biopolymers 30:1243–1257

    CAS  Google Scholar 

  46. Boucher LJ, Katz JJ (1967) J Am Chem Soc 89:1340–1345

    CAS  Google Scholar 

  47. Alben JO (1978) In: Dolphin P (ed) The porphyrins, vol III. Academic, New York, pp 323–345

  48. Spiro TG (1983) In: Lever ABP, Gray HB (eds) Iron porphyrin, part II (Physical Bioinorganic Chemistry Series). Addison-Wesley, London, pp 89–159

  49. Miller LM, Chance MR (1994) J Am Chem Soc 116:9662–9669

    CAS  Google Scholar 

  50. Behr J, Hellwig P, Mäntele W, Michel H (1998) Biochemistry 37:7400–7406

    CAS  Google Scholar 

  51. Vojtĕchovský J, Chu K, Berendzen J, Sweet RM, Schlichting I (1999) Biophys J 77:2153–2174

    Google Scholar 

  52. Godbout N, Sanders LK, Salzmann R, Havlin RH, Wojdelski M, Oldfried E (1999) J Am Chem Soc 121:3829–3844

    CAS  Google Scholar 

  53. Sjodin T, Christian JF, Macdonald IDG, Davydov R, Unno M, Sligar SG, Hoffman BM, Champion PM (2001) Biochemistry 40:6852–6859

    CAS  Google Scholar 

  54. Macdonald IDG, Sligar SG, Christian JF, Unno M, Champion PM (1999) J Am Chem Soc 121:376–380

    CAS  Google Scholar 

  55. Feltham RD, Enemark JH (1981) Top Stereochem 12:155–215

    CAS  Google Scholar 

  56. Yoshikawa S, O’Keeffe DH, Caughey WS (1985) J Biol Chem 260:3518–3528

    CAS  Google Scholar 

  57. Yu NT (1986) Methods Enzym 130:350–409

    CAS  Google Scholar 

  58. Boffi A, Chiancone E, Takahashi S, Rousseau DL (1997) Biochemistry 36:4505–4509

    CAS  Google Scholar 

  59. Alben JO, Fager LY (1972) Biochemistry 11:842–847

    CAS  Google Scholar 

  60. Alben JO, Caughey WS (1968) Biochemistry 7:175–183

    CAS  Google Scholar 

  61. Mincey T, Traylor TG (1979) J Am Chem Soc 101:765–766

    CAS  Google Scholar 

  62. Chang CK, Dolphin D (1976) Proc Natl Acad Sci USA 73:3338–3342

    CAS  Google Scholar 

  63. Yoshimura T (1983) Arch Biochem Biophys 220:167–178

    CAS  Google Scholar 

  64. Mouro C, Jung C, Bondon A, Simonneaux G (1997) Biochemistry 36:8125–8134

    CAS  Google Scholar 

  65. Jackson M, Mantsch HH (1995) Crit Rev Biochem Mol Biol 30:95–120

    CAS  Google Scholar 

  66. Hutchinson EG, Thornton JM (1996) Protein Sci 5:212–220

    Article  CAS  Google Scholar 

  67. Meilleur F, Contzen J, Myles DAA, Jung C (2004) Biochemistry 43:8744–8753

    CAS  Google Scholar 

  68. Jung C (2004) Biospektrum 9:48–49

    Google Scholar 

  69. Meersman F, Smeller L, Heremans K (2002) Biophys J 82:2635–2644

    CAS  Google Scholar 

  70. Pfeil W, Nölting BO, Jung C (1993) Biochemistry 32:8856–8862

    CAS  Google Scholar 

  71. Jung C, Pfeil W, Köpke K, Schulze H, Ristau O (1994) In: Lechner MC (ed) Proc 8th Int Conf on Cytochrome P450. John Libbey Eurotext, Paris, pp 543–546

  72. Timasheff SE (1998) Adv Protein Chem 51:356–432

    Google Scholar 

  73. Frauenfelder H, Sligar SG, Wolynes PG (1991) Science 254:1598–1603

    CAS  Google Scholar 

  74. Jung C, Marlow F (1987) Stud Biophys 120:241–251

    CAS  Google Scholar 

  75. Jung C, Hui Bon Hoa G, Schröder K-L, Simon M, Doucet JP (1992) Biochemistry 31:12855–12862

    CAS  Google Scholar 

  76. Jung C, Ristau O, Schulze H, Sligar SG (1996) Eur J Biochemistry 235:660–669

    CAS  Google Scholar 

  77. Jung C, Schulze H, Deprez E (1996) Biochemistry 35:15088–15094

    CAS  Google Scholar 

  78. Tsubaki M, Yoshikawa S, Ichikawa Y, Yu NT (1992) Biochemistry 31:8991–8999

    CAS  Google Scholar 

  79. Jung C, Stuehr DJ, Ghosh DK (2000) Biochemistry 39:10163–10171

    CAS  Google Scholar 

  80. Nagano S, Tosha T, Ishimori K, Morishima I, Poulos TL (2004) J Biol Chem 279:42844–42849

    CAS  Google Scholar 

  81. Bauer E, Magat M (1938) J Phys Radium 9:319–330

    CAS  Google Scholar 

  82. Schulze H, Ristau O, Jung C (1994) Eur J Biochem 224:1047–1055

    CAS  Google Scholar 

  83. Müller JD, McMahon BH, Chien EYT, Sligar SG, Nienhaus GU (1999) Biophys J 77:1036–1051

    Google Scholar 

  84. Barlow CH, Ohlson P-L, Paul K-G (1976) Biochemistry 15:2225–2229

    CAS  Google Scholar 

  85. O’Keefe DH, Ebel RE, Peterson JA, Maxwell JC, Caughey WS (1978) Biochemistry 17:5845–5852

    CAS  Google Scholar 

  86. Ingledew WJ, Smith SME, Salerno JC, Rich PR (2002) Biochemistry 41:8377–8384

    CAS  Google Scholar 

  87. Simgen B, Contzen J, Schwarzer R, Bernhardt R, Jung C (2000) Biochem Biophys Res Commun 269:737–742

    CAS  Google Scholar 

  88. Anzenbacher P, Dawson JH, Kitagawa T (1989) J Mol Struct 214:149–158

    CAS  Google Scholar 

  89. Legrand N, Bondon A, Simonneaux G, Jung C, Gill E (1995) FEBS Lett 364:152–156

    CAS  Google Scholar 

  90. Santolini J, Roman M, Stuehr DJ, Mattioli TA (2006) Biochemistry 45:1480–1489

    CAS  Google Scholar 

  91. Chartier FJM, Couture M (2004) Biophys J 87:1939–1950

    CAS  Google Scholar 

  92. Spiro TG, Wasbotten IH (2005) J Inorg Biochem 99:34–44

    CAS  Google Scholar 

  93. Jung C, Hui Bon Hoa G, Davydov D, Gill E, Heremans K (1995) Eur J Biochem 233:600–606

    CAS  Google Scholar 

  94. Jung C (1983) Stud Biophys 93:225–230

    CAS  Google Scholar 

  95. Scholl R (1991) Relaxation dynamics in heme proteins (Ph.D. thesis). University of Illinois, Urbana-Champaign, IL

  96. Jung C, Ghosh DK (2004) Cell Mol Biol 50:335–346

    CAS  Google Scholar 

  97. Buckingham AD (1960) Trans Faraday Soc 56:169–182

    Google Scholar 

  98. Jung C, Kozin SA, Canny B, Chervin J-C, Hui Bon Hoa G (2003) Biochem Biophys Res Commun 312:197–203

    CAS  Google Scholar 

  99. Laird BB, Skinner JL (1989) J Chem Phys 90:3274–3281

    CAS  Google Scholar 

  100. Zollfrank J, Friedrich J, Fidy J, Vanderkooi JM (1991) J Chem Phys 94:8600–8603

    CAS  Google Scholar 

  101. Jung C, Canny B, Chervin JC, Hui Bon Hoa G (2003) In: Anzenbacher P, Hudecek J (eds) Cytochromes P450: biochemistry, biophysics and drug metabolism. Monduzzi, Bologna, pp 195–199

  102. Jung C (1997) In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, pp 35–38

    Google Scholar 

  103. Anzenbacherová E, Bec N, Anzenbacher P, Hudeček J, Souček P, Jung C, Munro AW, Lange R (2000) Eur J Biochem 267:2916–2920

    Google Scholar 

  104. Hui Bon Hoa G, McLean MA, Sligar SG (2002) Biochim Biophys Acta 1595:297–308

    CAS  Google Scholar 

  105. Schulze H (1997) Strukturmultiplizität im Cytochrom P450-cam (Ph.D. thesis). Humboldt University, Berlin, Germany

  106. Lichtenegger H, Doster W, Kleinert T, Birk A, Sepiol B, Vogl G (1999) Biophys J 76:414–422

    CAS  Google Scholar 

  107. Mourant JR, Braunstein DP, Chu K, Frauenfelder H, Nienhaus GU, Ormos P, Young RD (1993) Biophys J 65:1496–1507

    CAS  Google Scholar 

  108. Bredenbeck J, Helbing J, Nienhaus K, Nienhaus GU, Hamm P (2007) Proc Natl Acad Soc USA 104:14243–14248

    CAS  Google Scholar 

  109. Braunstein DP, Chu K, Egeberg KD, Frauenfelder H, Mourant JR, Nienhaus GU, Ormos P, Sligar SG, Springer BA, Young RD (1993) Biophys J 65:2447–2454

    CAS  Google Scholar 

  110. Meller J, Elber R (1998) Biophys J 74:789–802

    CAS  Google Scholar 

  111. Hartmann H, Zinser S, Komninos P, Schneider RT, Nienhaus GU, Parak F (1996) Proc Natl Acad Sci USA 93:7013–7016

    CAS  Google Scholar 

  112. Brunori M, Vallone B, Cutruzzola F, Travaglini-Allocatelli C, Berendzen J, Chu K, Sweet R, Schlichting I (2000) Proc Natl Amer Soc 97:2058–2063

    CAS  Google Scholar 

  113. Contzen J, Jung C (1998) Biochemistry 37:4317–4324

    CAS  Google Scholar 

  114. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Biochim Biophys Acta 1770:330–344

    CAS  Google Scholar 

  115. Contzen J, Jung C (1999) Biochemistry 38:16253–16260

    CAS  Google Scholar 

  116. Contzen J, Kostka S, Kraft R, Jung C (2002) J Inorg Biochem 91:607–617

    CAS  Google Scholar 

  117. Kariakin A, Davydov D, Peterson JA, Jung C (2002) Biochemistry 41:13514–13525

    CAS  Google Scholar 

  118. Jolliffe IT (1986) Principal component analysis. Springer, New York

  119. Malinowski ER (1991) Factor analysis in chemistry, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  120. Unno M, Christian JF, Benson DE, Gerber NC, Sligar SG, Champion PM (1997) J Am Chem Soc 119:6614–6620

    CAS  Google Scholar 

  121. Nagano S, Shimada H, Tarumi A, Hishiki T, Kimata-Ariga Y, Egawa T, Suematsu M, Park SY, Adachi S, Shiro Y, Ishimura Y (2003) Biochemistry 42:14507–14514

    CAS  Google Scholar 

  122. Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Biosens Bioelectron 20:2408–2423

    CAS  Google Scholar 

  123. Lei C, Wollenberger U, Jung C, Scheller FW (2000) Biochem Biophys Res Commun 269:737–742

    Google Scholar 

  124. Todorovic S, Jung C, Hildebrandt P, Murgida DH (2006) J Biol Inorg Chem 11:119–127

    CAS  Google Scholar 

  125. Udit AK, Hagen KD, Goldman PJ, Star A, Gillan JM, Gray HB, Hill MG (2006) J Am Chem Soc 128:10320–10325

    CAS  Google Scholar 

  126. Liu Y, Lu C, Hou W, Zhu JJ (2008) Anal Biochem 375:27–34

    CAS  Google Scholar 

  127. Henczová M, Deér AK, Komlósi V, János Mink J (2006) Anal Bioanal Chem 385:652–659

    Google Scholar 

  128. Miller SO, Ewing GP, Howard C, Tachikawa H, Bigler SA, Barber WH, Angel M, McDaniel DO (2003) Biomed Sci Instrum 39:24–29

    CAS  Google Scholar 

  129. Ray GB, Li X-Y, Ibers JA, Sessler JL, Spiro TG (1994) J Am Chem Soc 116:162–176

    CAS  Google Scholar 

  130. Krimm S, Bandekar J (1986) Adv Prot Chem 38:181–364

    Article  CAS  Google Scholar 

  131. Nölting B, Jung C, Snatzke G (1992) Biochim Biophys Acta 1100:171–176

    Google Scholar 

  132. Poulos TL, Finzel BC, Howard AJ (1987) J Mol Biol 195:687–700

    CAS  Google Scholar 

  133. Shimizu T, Nozawa T, Hatano M, Satake H, Imai Y, Hashimoto C, Sato R (1979) Biochim Biophys Acta 579:122–133

    CAS  Google Scholar 

  134. Lehnerer M, Schulze J, Persecky SJ, Lewis DFV, Eulitz M, Hlavica P (1998) J Biochem 124:396–403

    CAS  Google Scholar 

  135. Garnier J, Osguthorpe DJ, Robson B (1978) J Mol Biol 120:97–120

    CAS  Google Scholar 

  136. Böhm S, Rein H, Butschak G, Scheinig H, Billwitz H, Ruckpaul K (1979) Acta Biol Med Germ 38:249–255

    Google Scholar 

  137. Schulze H, Hui Bon Hoa G, Helms H, Wade R, Jung C (1996) Biochemistry 35:14127–14138

    CAS  Google Scholar 

  138. Jung C, Hui Bon Hoa G, Schröder K-L, Simon M, Doucet JP (1992) Biochemistry 31:12855–12862

    CAS  Google Scholar 

  139. Gerhardt M (2004) Spektroskopische Charakterisierung der 14a-Sterol-Demethylase (CYP51) aus Mycobacterium tuberculosis (Diploma thesis). Technical University, Berlin, Germany

  140. Ullah AJH, Murray RI, Bhattacharyya PK, Wagner GC, Gunsalus IC (1990) J Biol Chem 265:1345–1351

    CAS  Google Scholar 

  141. Kanaever IP, Dedinskii IR, Skotselyas ED, Krainev AG, Guleva IV, Sevryukova IF, Koen YM, Kuznetsova GP, Bachmanova GI, Archakov AI (1992) Arch Biochem Biophys Res Commun 60:8–14

    Google Scholar 

  142. Lepesheva GI, Usanov SA (1998) Biokhimiya 63:265–276

    Google Scholar 

Download references

Acknowledgment

The FTIR studies were performed in the laboratory of the author at the Max Delbrück Center for Molecular Medicine at Berlin, Germany. The author thanks all former coworkers and students, in particular G. Sklenar, H. Schulze, C. Mouro, J. Contzen, N. Legrand, E. Deprez, E. Dehapiot, R. Schwarzer, A. Kariakin, M. Richter, M. Gerhardt and I. Czolkos, for contributing to projects related to the subject of this review. The author is also grateful to the collaborators G. Hui Bon Hoa and D. Davydov for helpful discussions. E. Bobrovnikova and G. Lepesheva are acknowledged for their contributions to FTIR studies on CYP2B4 and CYP11A1. The author thanks H. Frauenfelder and his students for support during the early FTIR studies on cytochromes P450 performed in the laboratory at the University of Illinois at Urbana-Champaign in 1982. Many thanks are also addressed to K. Heremans for the considerable advice given when setting up high-pressure FTIR. The German Research Foundation, the European Commission, the Institut National de la Santé et de la Recherche Médicale and the German Academic Exchange Service are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, C. Fourier transform infrared spectroscopy as a tool to study structural properties of cytochromes P450 (CYPs). Anal Bioanal Chem 392, 1031–1058 (2008). https://doi.org/10.1007/s00216-008-2216-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2216-4

Keywords

Navigation