Skip to main content

Advertisement

Log in

Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating was investigated by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was employed to evaluate the effect of annealing treatment on the morphology of the coatings in terms of their uniformity and porosity. Inductively coupled plasma mass spectrometry was used to measure ion concentrations in ion release tests performed on Ti-6Al-4V sheets modified with PAA coatings (annealed and unannealed). Results indicate that the annealing process produces coatings that possess considerable anti-corrosion performance. Moreover, the availability and the reactivity of the surface carboxylic groups were exploited in order to graft biological molecules onto the PAA-modified titanium implants. The feasibility of the grafting reaction was tested using a single aminoacid residue. A fluorinated aminoacid was selected, and the grafting reaction was monitored both by XPS, using fluorine as a marker element, and via quartz crystal microbalance (QCM) measurements. The success of the grafting reaction opens the door to the synthesis of a wide variety of PAA-based coatings that are functionalized with selected bioactive molecules and promote positive reactions with the biological system interfacing the implant while considerably reducing ion release into surrounding tissues.

Vanadium release from bare Ti-6Al-4V sheets compared with the release from sheets coated with annealed and unannealed electrosynthesised PAA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacobs JJ, Skipor AK, Black J, Urban RM, Galante JO (1991) J Bone Joint Surg Am 73:1475–1486

    Google Scholar 

  2. Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) J Bone Joint Surg Am 80:1447–1458

    Google Scholar 

  3. Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO (1999) Clin Orthop Relat Res 358:173–180

    Article  Google Scholar 

  4. Okazaki Y, Ito Y, Kyo K, Tateishi T (1996) Mater Sci Eng A 213:138–147

    Article  Google Scholar 

  5. Rie KT, Stucky T, Silva RA, Leitão E, Bordji K, Jouzeau J-Y, Mainard D (1995) Surf Coat Technol 74(75):973–980

    Article  Google Scholar 

  6. Trapp GA, Miner GD, Zimmerman RL, Mastri AR, Heston LL (1978) Biol Psychiat 13:709–718

    Google Scholar 

  7. Roberts NB, Clough A, Bellia JP, Kim JY (1998) J Inorg Biochem 69:171–176

    Article  CAS  Google Scholar 

  8. Wapner KL (1991) Clin Orthop Relat Res 271:12–20

    Google Scholar 

  9. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM, Bullough PG (1988) J Bone Joint Surg Am 70:347–356

    Google Scholar 

  10. Okazaki Y, Rao S, Asao S, Tateishi T, Katsuda S, Furuki Y (1998) Mater Trans JIM 39:1053–1062

    CAS  Google Scholar 

  11. Okazaki Y, Nishimura E (2000) Mater Trans JIM 41:1247–1255

    CAS  Google Scholar 

  12. Liu X, Chu PK, Ding C (2004) Mater Sci Eng Rep 47:49–121

    Google Scholar 

  13. De Giglio E, Cometa S, Spoto G, Sabbatini L, Zambonin PG (2005) Anal Bioanal Chem 381:626–633

    Article  CAS  Google Scholar 

  14. Teng FS, Mahalingam R (1979) J Appl Pol Sci 23:101–113

    Article  CAS  Google Scholar 

  15. Teng FS, Mahalingam R, Subramanian RV, Raff RAV (1977) J Electrochem Soc 124(7):995–1006

    Article  CAS  Google Scholar 

  16. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  Google Scholar 

  17. Peppas NA (2004) Int J Pharm 277(1–2):11–17

    Article  CAS  Google Scholar 

  18. Yessine MA, Leroux JC (2004) Adv Drug Deliv Rev 56(7):999–1021

    Article  CAS  Google Scholar 

  19. Jabbari E, Nozari S (2000) Euro Polym J 36(12):2685–2692

    Google Scholar 

  20. Ulbricht M, Riedel M (1998) Biomaterials 19:1229–1237

    Article  CAS  Google Scholar 

  21. Ulbricht M (2006) Polymer 74:2217–2262

    Article  Google Scholar 

  22. Cholod MS, Parker H-Y (1987) In: Salamone JC (ed) Polymeric materials encyclopedia. Wiley, New York

    Google Scholar 

  23. Wisbey A, Gregson PJ, Peter LM, Tuke M (1991) Biomaterials 12:470–473

    Article  CAS  Google Scholar 

  24. Valuev IL, Chupov VV, Valuel LI (1998) Biomaterials 19:41–43

    Article  CAS  Google Scholar 

  25. Goodman M, Kenner GW (1957) Adv Prot Chem 12:488–638

    Google Scholar 

  26. Kawahata NH, Brookes J, Makara GM (2002) Tetrahedron Lett 43:7221–7223

    Article  CAS  Google Scholar 

  27. Sheehan JC, Cruickshank PA, Boshart GL (1961) J Org Chem 26:2525–2528

    Article  CAS  Google Scholar 

  28. Xu Y, Miller MJ (1998) Org Chem 63:4314–4322

    Article  CAS  Google Scholar 

  29. Su X, Zong Richter R, Knoll W (2005) J Colloid Interf Sci 287:35–42

    Google Scholar 

  30. Leadley SR, Watts SF (1997) J Electron Spectrosc 85:107–121

    Article  CAS  Google Scholar 

  31. Höök F, Larsson C, Fant C (2002) Encyclopedia of surface and colloid science. M. Dekker, New York, pp 774–791

  32. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  33. Höök F, Kasemo B, Nylender T, Fant C, Sott C, Elwing H (2001) Anal Chem 73:5796–5804

    Article  Google Scholar 

  34. Larsson C, Rodahl M, Höök F (2003) Anal Chem 75:5080–5087

    Article  CAS  Google Scholar 

  35. Åsberg P, Björk P, Höök F, Inganäs O (2005) Langmuir 21:7292–7298

    Article  Google Scholar 

  36. Carrigan SD, Scott G, Tabrizian M (2005) Langmuir 21:5966–5973

    Article  CAS  Google Scholar 

  37. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Phys Scripta 59:391–396

    Google Scholar 

  38. Rodahl M, Höök F, Fredriksson C, Krozer A, Keller CA, Brzezinski P, Voinova M, Kasemo B (1997) Faraday Disc 107:229–246

    Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this paper to the 72nd birthday of Professor Pier Giorgio Zambonin. They would like to thank him warmly for the continuous critical guidance that he has given them throughout their academic careers. They have greatly benefited from his valuable suggestions about how to approach research work, such as to always follow a rigorous approach and clearly define the scientific objectives.

The financial support of University of Bari is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. De Giglio.

Additional information

Dedicated to Professor P.G. Zambonin on the occasion of his 72nd birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Giglio, E., Cometa, S., Cioffi, N. et al. Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Anal Bioanal Chem 389, 2055–2063 (2007). https://doi.org/10.1007/s00216-007-1299-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1299-7

Keywords

Navigation