Skip to main content
Log in

Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical procedure involving solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC–MS) has been developed for determination of pharmaceutical compounds (aspirin, caffeine, carbamazepine, diclofenac, ketoprofen, naproxen, ibuprofen, clofibrate, clofibric acid, and gemfibrozil) in a variety of aqueous samples (wastewater and surface water). After filtration, samples were extracted and concentrated using C18 or HLB cartridges, depending on the type of compound. Sample storage conditions were checked and optimized to ensure preservation of the pharmaceutical substance, taking into consideration environmental sampling conditions. For most of the pharmaceuticals monitored, recovery was in the range 53 to 99% and the variability was below 15% for the complete procedure, with limits of detection ranging from 0.4 to 2.5 ng L−1, depending on the compound. The methods were successfully applied to monitoring of pharmaceutical contamination of the Seine estuary. Concentrations varied from several dozens of nanograms per liter for surface waters to several hundreds of nanograms per liter for wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Chemosphere 36:357–393

    Article  CAS  Google Scholar 

  2. Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) J Chromatogr A 938:199–210

    Article  CAS  Google Scholar 

  3. Ternes TA, Hirsch R, Mueller J, Haberer K (1998) Fresenius J Anal Chem 362:329–340

    Article  CAS  Google Scholar 

  4. Zuccato E, Castiglioni S, Fanelli R (2005) J Hard Mater 122:205–209

    Article  CAS  Google Scholar 

  5. Koutsouba V, Heberer T, Fuhrmann B, Schmidt-Baumler K, Tsipi D, Hiskia A (2003) Chemosphere 51:69–75

    Article  CAS  Google Scholar 

  6. Castiglioni S, Fanelli R, Calamari D, Bagnati R, Zuccato E (2004) Regul Toxicol Pharm 39:25–32

    Article  CAS  Google Scholar 

  7. Farré M, Ferrer I, Ginebreda A, Figueras M, Olivella L, Tirapu L, Vilanova M, Damia B (2001) J Chromatogr A 938:187–197

    Article  Google Scholar 

  8. Buser HR, Poiger T, Müller MD (1998) Environ Sci Technol 32:3449–3456

    Article  CAS  Google Scholar 

  9. Golet EM, Alder AC, Giger W (2002) Environ Sci Technol 36:3645–3651

    Article  CAS  Google Scholar 

  10. Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Water Res 39:1761–1772

    Article  CAS  Google Scholar 

  11. Andreozzi R, Raffaele M, Nicklas P (2003) Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  12. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  13. Kumazawa L, Sato T, Suzuki O (1997) J Chromatogr Sci 35:302–308

    Google Scholar 

  14. Sun Y, Takaba K, Kido H, Nakashima MN, Nakashima K (2003) J Pharm Biomed 30:1611–1619

    Article  CAS  Google Scholar 

  15. Theodoridis G, Koster H, de Jong (2000) J Chromatogr B 745:49–82

    Article  CAS  Google Scholar 

  16. Santos JL, Aparicio I, Alonso E, Callejon M (2005) Anal Chim Acta 550:116–122

    Article  CAS  Google Scholar 

  17. Ulrich S (2000) J Chromatogr A 902:167–194

    Article  CAS  Google Scholar 

  18. Fagerquist CK, Lightfield AR (2003) Rapid Commun Mass Spectrom 17:660–671

    Article  CAS  Google Scholar 

  19. Löffler D, Ternes TA (2003) J Chromatogr A 1021:133–144

    Article  Google Scholar 

  20. Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:129–141

    Article  CAS  Google Scholar 

  21. Ternes TA, Stüber J, Haerrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Water Res 37:1976–1982

    Article  CAS  Google Scholar 

  22. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Environ Toxicol Chem 22:2881–2889

    Article  CAS  Google Scholar 

  23. Moeder M, Schrader S, Winkler M, Popp P (2000) J Chromatogr A 873:95–106

    Article  CAS  Google Scholar 

  24. Deng A, Himmelsbach M, Zhu QZ, Frey S, Sengl M, Buchberger W, Niessner R, Knopp D (2003) Environ Sci Technol 37:3422–3429

    Article  CAS  Google Scholar 

  25. El Haj BM, Al Ainri AM, Hassan MH, Bin Khadem RK, Marzouq MS (1999) Forensic Sci Int 105:141–153

    Article  Google Scholar 

  26. Budzinski H, Devier MH, Labadie P, Togola A (2006) Anal Bioanal Chem 386:1429–1439

    Article  CAS  Google Scholar 

  27. Ternes TA (1998) Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  28. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  29. Ternes TA, Hirsch R (2000) Environ Sci Technol 34:2741–2748

    Article  CAS  Google Scholar 

  30. Tixier C, Singer HP, Ollers S, Muller SR (2003) Environ Sci Technol 37(6):1061–1068

    Article  CAS  Google Scholar 

  31. Ternes TA (2001) Trends Anal Chem 20:419–434

    Article  CAS  Google Scholar 

  32. Desbrow C, Routledge E, Brighty G, Sumpter JP, Waldock MJ (1998) Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  33. Verenitch SS, Lowe CJ, Mazumder A (2006) J Chromatogr A 1116:193–203

    Article  CAS  Google Scholar 

  34. Lam MW, Young CJ, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, Richards SM, Solomon KR, Mabury SA (2004) Environ Toxicol Chem 23:1431–1440

    Article  CAS  Google Scholar 

  35. Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Water Res 39:3139–3152

    Article  CAS  Google Scholar 

  36. Buser HR, Müller M, Theobald N (1998) Environ Sci Technol 32:188–192

    Article  CAS  Google Scholar 

  37. Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003) Environ Toxicol Chem 22:2872–2880

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the “Région Aquitaine”, the Seine Aval and the “GIS ECOBAG” programs for research funding. They want also to acknowledge the ORQUE (Environmental Quality Research Observatory) program and the NFS (National Funding for Science) for providing the PhD grant of A. Togola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Budzinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togola, A., Budzinski, H. Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Anal Bioanal Chem 388, 627–635 (2007). https://doi.org/10.1007/s00216-007-1251-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1251-x

Keywords

Navigation