Skip to main content
Log in

Raman spectroscopy on transition metals

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) has developed into one of the most important tools in analytical and surface sciences since its discovery in the mid-1970s. Recent work on the SERS of transition metals concluded that transition metals, other than Cu, Ag, and Au, can also generate surface enhancement as high as 4 orders of magnitude. The present article gives an overview of recent progresses in the field of Raman spectroscopy on transition metals, including experimental, theory, and applications. Experimental considerations of how to optimize the experimental conditions and calculate the surface enhancement factor are discussed first, followed by a very brief introduction of preparation of SERS-active transition metal substrates, including massive transition metal surfaces, aluminum-supported transition metal electrodes, and pure transition metal nanoparticle assembled electrodes. The advantages of using SERS in investigating surface bonding and reaction are illustrated for the adsorption and reaction of benzene on Pt and Rh electrodes. The electromagnetic enhancement, mainly lightning-rod effect, plays an essential role in the SERS of transition metals, and that the charge-transfer effect is also operative in some specific metal–molecule systems. An outlook for the field of Raman spectroscopy of transition metals is given in the last section, including the preparation of well-ordered or well-defined nanostructures, and core-shell nanoparticles for investigating species with extremely weak SERS signals, as well as some new emerging techniques, including tip-enhanced Raman spectroscopy and an in situ measuring technique.

Electric-field enhancement of a SERS-active Rh surface decorated with small nanohemispheres

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166

    CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20

    CAS  Google Scholar 

  3. Albrecht MG, Creighton JA (1978) J Am Chem Soc 99:5215–5216

    Google Scholar 

  4. Aroca RF (2006) Surface-enhanced vibrational spectroscopy. Wiley, Berlin

    Google Scholar 

  5. Cotton TM (1988) Adv Spectrosc 16:91–153

    CAS  Google Scholar 

  6. Garrell RL (1989) Anal Chem 61:401A–411A

    CAS  Google Scholar 

  7. Pemberton JE (1991) In: Abruna HD (ed) Electrochemical interfaces: modern technique for in-situ interface characterization. VCH, Berlin, pp 193–263

  8. Birke RL, Lu T, Lombardi JR (1991) In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, pp 211–277

  9. Pettinger B (1992) In: Lipkowski J, Ross PN (eds) Adsorption at electrode surface. VCH, New York, pp 285–345

  10. Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250

    CAS  Google Scholar 

  11. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2975

    CAS  Google Scholar 

  12. Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483

    CAS  Google Scholar 

  13. Tian ZQ, Ren B (2004) Annu Rev Phys Chem 55:197–229

    CAS  Google Scholar 

  14. Baker GA, Moore DS (2005) Anal Bioanal Chem 382:1751–1769

    CAS  Google Scholar 

  15. Moskovits M (1985) Rev Mod Phys 57:783–826

    CAS  Google Scholar 

  16. Kerker M (1984) Acc Chem Res 17:271–277

    CAS  Google Scholar 

  17. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212

    CAS  Google Scholar 

  18. Lombardi JR, Birke RL, Lu TH, Xu J (1986) J Chem Phys 84:4174–4180

    CAS  Google Scholar 

  19. Cline MP, Barber PW, Chang RK (1986) J Opt Soc Am B 3:15–21

    CAS  Google Scholar 

  20. Van Duyne RP, Haushalter JP (1983) J Phys Chem 87: 2999–3003

    Google Scholar 

  21. Oblonsky LJ, Devine TM, Ager JW, Perry SS, Mao XL, Russo RE (1994) J Electrochem Soc 141:3312–3317

    CAS  Google Scholar 

  22. Fleischmann M, Tian ZQ (1987) J Electroanal Chem 217:385–395

    CAS  Google Scholar 

  23. Fleischmann M, Tian ZQ, Li LJ (1987) J Electroanal Chem 217:397–410

    CAS  Google Scholar 

  24. Aramaki K, Ohi M, Uehara J (1992) J Electrochem Soc 139:1525–1529

    CAS  Google Scholar 

  25. Leung LWH, Weaver MJ (1987) J Electroanal Chem 217:367–384

    CAS  Google Scholar 

  26. Leung LWH, Weaver MJ (1987) J Am Chem Soc 109:5113–5119

    CAS  Google Scholar 

  27. Zou S, Weaver MJ (1998) Anal Chem 70:2387–2395

    CAS  Google Scholar 

  28. Zou S, Weaver MJ, Li XQ, Ren B, Tian ZQ (1999) J Phys Chem B 103:4218–4222

    CAS  Google Scholar 

  29. Weaver MJ, Zou S, Chan HYH (2000) Anal Chem 72:38A–47A

    CAS  Google Scholar 

  30. Park S, Yang P, Corredor P, Weaver MJ (2002) J Am Chem Soc 124:2428–2429

    CAS  Google Scholar 

  31. Zou SZ, Weaver MJ (1999) J Phys Chem B 103:2323–2326

    CAS  Google Scholar 

  32. Cooney RP, Fleischmann M, Hendra PJ (1977) J Chem Soc Chem Commun 235–237

  33. Pettinger B, Tiedemann U (1987) J Electroanal Chem 228:219–228

    CAS  Google Scholar 

  34. Pettinger B, Friedrich A, Tiedemann U (1990) J Electroanal Chem 280:49–59

    CAS  Google Scholar 

  35. Bryant MA, Loa SL, Pemberton JE (1992) Langmuir 8:753–756

    CAS  Google Scholar 

  36. Taylor CE, Pemberton JE, Goodman GG, Schoenfisch MH (1999) Appl Spectrosc 53:1212–1221

    CAS  Google Scholar 

  37. Maeda T, Sasaki Y, Horie C, Osawa M (1993) J Electron Spectrosc Relat Phenom 64/65:381–389

    Google Scholar 

  38. Bilmes SA, Rubim JC, Otto A, Arvia AJ (1989) Chem Phys Lett 159:89–96

    CAS  Google Scholar 

  39. Bilmes SA (1990) Chem Phys Lett 171:141–146

    CAS  Google Scholar 

  40. Shannon C, Campion A (1988) J Phys Chem 92:1385–1387

    CAS  Google Scholar 

  41. Yamada H, Yamamoto Y (1981) Chem Phys Lett 77:520–522

    CAS  Google Scholar 

  42. Yamada H, Yamamoto Y (1983) Surf Sci 134:71–90

    CAS  Google Scholar 

  43. Tian ZQ, Ren B (2003) In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry. Wiley-VCH, Weinheim, pp 572–659

  44. Tian ZQ, Ren B, Mao BW (1997) J Phys Chem B 101:1338–1346

    CAS  Google Scholar 

  45. Huang QJ, Yao JL, Gu RA, Tian ZQ (1997) Chem Phys Lett 271:101–106

    CAS  Google Scholar 

  46. Cao PG, Yao JL, Ren B, Mao BW, Gu RA, Tian ZQ (2000) Chem Phys Lett 316:1–5

    CAS  Google Scholar 

  47. Wu DY, Xie Y, Ren B, Yan JW, Mao BW, Tian ZQ (2001) Phys Chem Comm 18:1–3

    CAS  Google Scholar 

  48. Ren B, Lin XF, Yan JW, Mao BW, Tian ZQ (2003) J Phys Chem B 107:899–902

    CAS  Google Scholar 

  49. Liu Z, Yang ZL, Cui L, Ren B, Tian ZQ (2007) J Phys Chem C 111:1170–1175

    Google Scholar 

  50. Guo L, Huang QJ, Li XY, Yang SH (2001) Phys Chem Chem Phys 3:1661–1665

    CAS  Google Scholar 

  51. Gómez R, Pérez JM, Solla-Gullón J, Montiel V, Aldaz A (2004) J Phys Chem B 108:9943–9949

    Google Scholar 

  52. Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) ChemPhysChem 6:2017–2021

    Google Scholar 

  53. Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) J Raman Spectrosc 36:613–622

    Google Scholar 

  54. Zettsu N, McLellan JM, Wiley B, Yin YD, Li ZY, Xia YN (2005) Angew Chem Int Ed 45:1288–1292

    Google Scholar 

  55. Xiong YJ, McLellan JM, Chen JY, Yin YD, Li ZY, Xia YN (2005) J Am Chem Soc 127:17118–17127

    CAS  Google Scholar 

  56. McLellan JM, Xiong YJ, Hu M, Xia YN (2006) Chem Phys Lett 417:230–234

    CAS  Google Scholar 

  57. Kim NH, Kim K (2004) Chem Phys Lett 393:478–482

    CAS  Google Scholar 

  58. Kim NH, Kim K (2005) J Raman Spectrosc 36:623–628

    CAS  Google Scholar 

  59. Ren B, Lin XF, Jiang YX, Cao PG, Xie Y, Huang QJ, Tian ZQ (2003) Appl Spectrosc 57:419–427

    CAS  Google Scholar 

  60. Gu W, Ren B, Gu RA, Tian ZQ (2007) (in preparation)

  61. Zuo C, Jagodzinski PW (2005) J Phys Chem B 109:1788–1793

    CAS  Google Scholar 

  62. Li JF, Yang ZL, Ren B, Liu GK, Fang PP, Jiang YX, Wu DY, Tian ZQ (2006) Langmuir 22:10372–10379

    CAS  Google Scholar 

  63. Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Faraday Discuss 132:159–170

    CAS  Google Scholar 

  64. Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22

    CAS  Google Scholar 

  65. Steinruck HP, Huber W, Pache T, Menzel D (1989) Surf Sci 218:293–316

    Google Scholar 

  66. Somorjai CA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  67. Lehwald S, Ibach H, Demuth JE (1978) Surf Sci 78:577–590

    CAS  Google Scholar 

  68. Haq S, King DA (1996) J Phys Chem 100:16957–16965

    CAS  Google Scholar 

  69. Lin RF, Koestner RJ, Van Hove MA, Somorjai GA (1983) Surf Sci 134:161–183

    CAS  Google Scholar 

  70. Neumann M, Mack JU, Bertel E, Netzer FP (1985) Surf Sci 155:629–638

    CAS  Google Scholar 

  71. Koel BE, Crowell JE, Mate CM, Somorjai GA (1984) J Phys Chem 88:1988–1996

    CAS  Google Scholar 

  72. Mate CM, Somorjai GA (1985) Surf Sci 160:542–560

    CAS  Google Scholar 

  73. Zou SZ, Williams CT, Chen EKY, Weaver MJ (1998) J Am Chem Soc 120:3811–3812

    CAS  Google Scholar 

  74. Zou SZ, Williams CT, Chen EKY, Weaver MJ (1998) J Phys Chem B 102:9039–9049

    CAS  Google Scholar 

  75. Liu GK, Yao JL, Ren B, Gu RA, Tian ZQ (2002) Electrochem Commun 4:392–396

    CAS  Google Scholar 

  76. Liu GK, Ren B, Gu RA, Tian ZQ (2002) Chem Phys Lett 364:593–598

    CAS  Google Scholar 

  77. Liu GK, Ren B, Wu DY, Duan S, Li JF, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:17498–17506

    CAS  Google Scholar 

  78. Bernhard S (1989) Raman/Infrared atlas of organic compounds. VCH, Weinheim

    Google Scholar 

  79. Morin C, Simon D, Sautet P (2004) J Phys Chem B 108:5653–5665

    CAS  Google Scholar 

  80. Varsanyi G (1974) Assignments for Vibrational spectra of seven hundred benzene derivatives. Wiley, New York

    Google Scholar 

  81. Liu GK, Ren B, Gu RA, Tian ZQ (2007) J Phys Chem C 111 (in press)

  82. Brewer L (1969) Science 161:115–122

    Google Scholar 

  83. Gersten J, Nitzan A (1980) J Chem Phys 73:3023–3037

    CAS  Google Scholar 

  84. Adrian FJ (1981) Chem Phys Lett 78:45–49

    CAS  Google Scholar 

  85. Metiu H (1984) Prog Surf Sci 17:153–320

    CAS  Google Scholar 

  86. Schatz GC, Young MA, Van Duyne RP (2006) Top Appl Phys 103:19–46

    CAS  Google Scholar 

  87. Weaver JH (1975) Phys Rev B 11:1416–1425

    CAS  Google Scholar 

  88. Ordal MA, Bell RJ, Alexander RW Jr, Long LL, Querry MR (1985) Appl Opt 24:4493–4499

    Article  CAS  Google Scholar 

  89. Tian ZQ, Yang ZL, Ren B, Wu DY (2006) Top Appl Phys 103:125–147

    CAS  Google Scholar 

  90. Tian ZQ (2006) Faraday Discuss 132:156–157

    Google Scholar 

  91. Wu DY, Duan S, Ren B, Tian ZQ (2005) J Raman Spectrosc 36:533–540

    CAS  Google Scholar 

  92. Xie Y, Wu DY, Liu GK, Huang ZF, Ren B, Yan JW, Yang ZL, Tian ZQ (2003) J Electroanal Chem 554:417–425

    Google Scholar 

  93. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482

    CAS  Google Scholar 

  94. Kim CW, Villagran JC, Even U, Thompson JC (1991) J Chem Phys 94:3974–3977

    CAS  Google Scholar 

  95. Persson BNJ (1993) Surf Sci 281:153–162

    CAS  Google Scholar 

  96. Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solid. Springer, Berlin, vol 4, pp 289–418

  97. Pettinger B (1986) J Chem Phys 85:7442–7451

    CAS  Google Scholar 

  98. Corni S, Tomasi J (2001) Chem Phys Lett 342:135–140

    CAS  Google Scholar 

  99. Corni S, Tomasi J (2001) J Chem Phys 114:3739–3751

    CAS  Google Scholar 

  100. Corni S, Tomasi J (2002) J Chem Phys 116:1156–1164

    CAS  Google Scholar 

  101. Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:075419.1–075419.9

    Google Scholar 

  102. Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804

    CAS  Google Scholar 

  103. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanah KL (2004) Nano Lett 4:2015–2018

    CAS  Google Scholar 

  104. Kolb DM, Ullmann R, Will T (1997) Science 275:1097–1099

    CAS  Google Scholar 

  105. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Science 283:661–663

    CAS  Google Scholar 

  106. Zhang X, Whitney AV, Zhao J, Hicks EM, Van Duyne RP (2006) J Nanosci Nanotech 6:1920–1934

    CAS  Google Scholar 

  107. Abdelsalam ME, Bartlett PN, Baumberg JJ, Cintra S, Kelf TA, Russellet AE (2005) Electrochem Comm 7:740–744

    CAS  Google Scholar 

  108. Yao JL, Pan GP, Xue KH, Wu DY, Ren B, Sun DM, Tang J, Xu X, Tian ZQ (2000) Pure Appl Chem 72:221–226

    CAS  Google Scholar 

  109. Perry SS, Hatch SR, Campion A (1996) J Chem Phys 104:6856–6859

    CAS  Google Scholar 

  110. Sakamoto K, Hashizume H, Nagafusa M, Sato H, Ushioda S (1996) Surf Sci 368:292–295

    CAS  Google Scholar 

  111. Bruckbauer A, Otto A (1998) J Raman Spectrosc 29:665–672

    CAS  Google Scholar 

  112. Sun YG, Xia YN (2002) Science 298:2176–2179

    CAS  Google Scholar 

  113. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1926

    CAS  Google Scholar 

  114. Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649

    CAS  Google Scholar 

  115. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Google Scholar 

  116. Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2005) Angew Chem Int Ed 44:139–142

    CAS  Google Scholar 

  117. Jiang YX, Li JF, Wu DY, Ren B, Yang ZL, Hu JW, Chow YL, Tian ZQ (2007) (submitted)

  118. Verma P, Inouye Y, Kawata S (2006) Top Appl Phys 103:241–262

    CAS  Google Scholar 

  119. Pettinger B (2006) Top Appl Phys 103:217–242

    Article  CAS  Google Scholar 

  120. Bouhelier A (2006) Microsc Res Tech 69:563–579

    CAS  Google Scholar 

  121. Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chemphyschem 7:1428–1430

    CAS  Google Scholar 

  122. Anderson N, Hartschuh A, Cronin S, Novotny L (2005) J Am Chem Soc 127:2533–2537

    CAS  Google Scholar 

  123. Ren B, Cui L, Lin XF, Tian ZQ (2003) Chem Phys Lett 376:130–135

    CAS  Google Scholar 

Download references

Acknowledgements

The present work is supported by the Natural Science Foundation of China (20473067, 20673086, 20433040, 20021002, 20228020), Ministry of Education of China (20040384010, NCET-05-0564) and Fok Ying Tung Foundation (101015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, B., Liu, GK., Lian, XB. et al. Raman spectroscopy on transition metals. Anal Bioanal Chem 388, 29–45 (2007). https://doi.org/10.1007/s00216-007-1141-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1141-2

Keywords

Navigation