Skip to main content
Log in

Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Limits of detection have been studied for several elements in aluminium and steel alloys, at atmospheric pressure in air, by use of the single and collinear double-pulse configurations of laser-induced breakdown spectroscopy. For this purpose, calibration plots were constructed for Mg, Al, Si, Ti, Cr, Mn, Fe, Ni, and Cu using a set of certified aluminium alloy samples and a set of certified steel samples. The investigation included optimization of the experimental conditions to furnish the best signal-to-noise ratio. Inter-pulse delay, gate width, and acquisition delay were studied. The detection limits for the elements of interest were calculated under the optimum conditions for the double-pulse configuration and compared with those obtained under the optimum conditions for single-pulse configuration. Significantly improved detection limits were achieved, for all the elements investigated, and in both aluminium and steel, by use of the double-pulse configuration. The experimental findings are discussed in terms of the measured plasma conditions (particle and electron density, and temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, Omenetto N (2004) Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J Anal At Spectrom 19:1061–1083

    Article  CAS  Google Scholar 

  2. Leis F, Sdorra W, Ko JB, Niemax K (1989) Basic investigations for laser microanalysis: I. Optical emission spectrometry of laser-produced sample plumes. Mikrochim Acta 2:185–199

    Article  CAS  Google Scholar 

  3. Ismail MA, Imam H, Elhassan A, Youniss WT, Harith MA (2004) LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J Anal At Spectrom 19:489–494

    Article  CAS  Google Scholar 

  4. Uebbing J, Brust J, Sdorra W, Leis F, Niemax K (1991) Reheating of a Laser-Produced Plasma by a 2nd Pulse Laser. Appl Spectrosc 45:1419–1423

    Article  ADS  CAS  Google Scholar 

  5. Sattmann R, Sturm V, Noll R (1995) Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J Phys, D, Appl Phys 28:2181–2187

    Article  ADS  CAS  Google Scholar 

  6. St-Onge L, Sabsabi M, Cielo P (1998) Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim Acta, Part B: Atom Spectrosc 53:407–415

    Article  Google Scholar 

  7. St-Onge L, Detalle V, Sabsabi M (2002) Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd : YAG laser pulses. Spectrochim Acta, Part B: Atom Spectrosc 57:121–135

    Article  Google Scholar 

  8. Colao F, Lazic V, Fantoni R, Pershin S (2002) A comparison of single and double-pulse laser-induced breakdown spectroscopy of aluminium samples. Spectrochim Acta, Part B: Atom Spectrosc 57:1167–1179

    Article  Google Scholar 

  9. Colao F, Pershin S, Lazic V, Fantoni R (2002) Investigation of the mechanisms involved in formation and decay of laser-produced plasmas. Appl Surf Sci 197:207–212

    Article  Google Scholar 

  10. Noll R, Sattmann R, Sturm V, Winkelmann S (2004) Space- and time-resolved dynamics of plasmas generated by laser double-pulses interacting with metallic samples. J Anal At Spectrom 19:419–428

    Article  CAS  Google Scholar 

  11. Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C (2004) Three-dimensional analysis of laser induced plasmas in single and double-pulse configuration. Spectrochim Acta, Part B: Atom Spectrosc 59:723–735

    Article  Google Scholar 

  12. Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2004) Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochim Acta, Part B: Atom Spectrosc 59:1907–1917

    Article  Google Scholar 

  13. Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2005) Characterization of a collinear double-pulse laser-induced plasma at several ambient gas pressures by spectrally- and time-resolved imaging. Appl Phys, B Lasers Opt 80:559–568

    Article  ADS  CAS  Google Scholar 

  14. Stratis DN, Eland KL, Angel SM (2000) Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Appl Spectrosc 54:1270–1274

    Article  ADS  CAS  Google Scholar 

  15. Stratis DN, Eland KL, Angel SM (2000) Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS. Appl Spectrosc 54:1719–1726

    Article  ADS  CAS  Google Scholar 

  16. Stratis DN, Eland KL, Angel SM (2001) Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma. Appl Spectrosc 55:1297–1303

    Article  ADS  CAS  Google Scholar 

  17. Gautier C, Fichet P, Menut D, Lacour JL, L’hermite D, Dubessy J (2004) Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy. Spectrochim Acta, Part B: Atom Spectrosc 59:975–986

    Article  Google Scholar 

  18. Gautier C, Fichet P, Menut D, Lacour JL, L’hermite D, Dubessy J (2005) Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry. Spectrochim Acta, Part B: Atom Spectrosc 60:265–276

    Article  Google Scholar 

  19. Scaffidi J, Pender J, Pearman W, Goode SR, Colston BW, Carter JC, Angel SM (2003) Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl Opt 42:6099–6106

    PubMed  ADS  Google Scholar 

  20. Semerok A, Dutouquet C (2004) Ultrashort double-pulse laser ablation of metals. Thin Solid Films 453–454:501–505

    Article  Google Scholar 

  21. Benedetti PA, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Effect of laser pulse energies in laser-induced breakdown spectroscopy in double-pulse configuration. Spectrochim Acta, Part B: Atom Spectrosc 60:1392–1401

    Article  Google Scholar 

  22. Aguilera JA, Bengoechea J, Aragon C (2004) Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances. Spectrochim Acta, Part B: Atom Spectrosc 59:461–469

    Article  Google Scholar 

  23. Kraushaar M, Noll R, Schmitz H-U (2003) Slag analysis with laser-induced breakdown spectrometry. Appl Spectrosc 57:1282–1287

    Article  PubMed  CAS  Google Scholar 

  24. http://physics.nist.gov/PhysRefData/ASD/levels_form.html

  25. Sturm V, Peter L, Noll R (2000) Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl Spectrosc 54:1275–1278

    Article  ADS  CAS  Google Scholar 

  26. Sturm V, Vrenegor J, Noll R, Hemmerlin M (2004) Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, C, Cu, Mn, and Mo. J Anal At Spectrom 19:451–456

    Article  CAS  Google Scholar 

  27. Ashkenazy J, Kipper R, Caner M (1991) Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines. Phys Rev A 43:5568–5574

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Yalcin S, Crosley DR, Smith GP, Faris GW (1999) Influence of ambient conditions on the laser air spark. Appl Phys B Lasers Opt 68:121–130

    Article  ADS  CAS  Google Scholar 

  29. Liu HC, Mao XL, Yoo JH, Russo RE (1999) Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochim Acta, Part B: Atom Spectrosc 54:1607–1624

    Article  Google Scholar 

  30. Aguilera JA, Aragon C (2004) Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim Acta, Part B: Atom Spectrosc 59:1861–1876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Tognoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, M.A., Cristoforetti, G., Legnaioli, S. et al. Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations. Anal Bioanal Chem 385, 316–325 (2006). https://doi.org/10.1007/s00216-006-0363-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0363-z

Keywords

Navigation