Skip to main content
Log in

Systematic line selection for online coating thickness measurements of galvanised sheet steel using LIBS

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

LIBS can be used as an online method of characterizing galvanized coatings on sheet steel moving through a production line. The traversing sheet steel is irradiated with a series of single laser bursts, each at a different position on the sheet steel. An ablation depth in the same range as the coating thickness (about 10 μm) is achieved by using a Nd:YAG laser at 1064 nm in collinear double-pulse mode. The coating thickness is determined from the ratio of the intensities of an iron line and a zinc line measured at a burst energy high enough to penetrate the coating with a single burst. Experiments at different burst energies were carried out to optimize the thickness resolution, and a method of systematically selecting iron and zinc lines was deduced, which is based on multivariate data analysis (MVDA) of the intensity ratios calculated for a set of 6 zinc lines and 21 iron lines. A temperature correction was applied, because the parameters of the plasma change with burst energy, and the influence of this on the thickness resolution is discussed. The ambient atmosphere present (air, Ar, N2) as well as self-absorption of spectral lines both have an influence on the thickness resolution. At optimum conditions, a thickness measurement accuracy of better than 150 nm was obtained for a set of electrolytic galvanized sheet steels with coating thicknesses in the range 4.1–11.2 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5

Similar content being viewed by others

References

  1. ISO (2000) Metallic coatings—measurement of coating thickness—X-ray spectrometric methods—ISO-Norm 3497:2000(E). International Organization for Standardization, Geneva, Switzerland

  2. Balzer H, Hoehne M, Sturm V, Noll R (2005) Spectrochim Acta B 60:1172–1178

    Article  Google Scholar 

  3. Payling R, Jones D, Bengtson A (eds) (1997) Glow discharge optical emission spectrometry. Wiley, New York

    Google Scholar 

  4. Anderson DR, McLeod CW, English T, Smith AT (2000) Appl Spectrosc 49:691–701

    Article  ADS  Google Scholar 

  5. St-Onge L, Sabsabi M (2000) Spectrochim Acta B 55:299–308

    Article  Google Scholar 

  6. Margetic V, Bolshov M, Stockhaus A, Niemax K, Hergenröder R (2001) J Anal Atom Spectrom 16:616–621

    Article  CAS  Google Scholar 

  7. Mateo MP, Vadillo JM, Laserna JJ (2001) J Anal Atom Spectrom 16:1317–1321

    Article  CAS  Google Scholar 

  8. Vadillo JM, Garcia CC, Palanco S, Laserna JJ (1998) J Anal Atom Spectrom 13:793–797

    Article  CAS  Google Scholar 

  9. Garcia CC, Corral M, Vadillo JM, Laserna JJ (2000) Appl Spectrosc 54:1027–1031

    Article  ADS  CAS  Google Scholar 

  10. Mateo MP, Cabalín LM, Laserna JJ (2003) Appl Optics 42:6057–6062

    ADS  Google Scholar 

  11. Papazoglou DG, Papadakis V, Anglos D (2004) J Anal Atom Spectrom 19:483–488

    Article  CAS  Google Scholar 

  12. Mowery MD, Sing R, Kirsch J, Razaghi A, Bechard S, Reed R (2002) J Pharm Biomed Anal 28:935–943

    Article  PubMed  CAS  Google Scholar 

  13. Pouli P, Melessanaki K, Giakoumaki A, Argyropoulos V, Anglos D (2005) Spectrochim Acta B 60:1163–1171

    Article  Google Scholar 

  14. Martin MZ, Labbe N, Rials TG, Wullschleger SD (2005) Spectrochim Acta B 60:1179–1185

    Article  Google Scholar 

  15. Kraushaar M, Noll R, Schmitz H-U (2003) Appl Spectrosc 57:1282–1287

    Article  PubMed  CAS  Google Scholar 

  16. Fink H, Panne U, Niessner R (2002) Anal Chem 74:4334–4342

    Article  PubMed  CAS  Google Scholar 

  17. Palanco S, Laserna JJ (2000) J Anal Atom Spectrom 15:1321–1327

    Article  CAS  Google Scholar 

  18. Huang J-S, Lin K-C (2005) J Anal Atom Spectrom 20:53–59

    Article  Google Scholar 

  19. Lazic V, Fantoni R, Colao F, Santagata A, Morone A, Spizzichino V (2004) J Anal Atom Spectrom 19:429–436

    Article  CAS  Google Scholar 

  20. Lui SL, Cheung NH (2003) Spectrochim Acta B 58:1613–1623

    Article  Google Scholar 

  21. Detalle V, Sabsabi M, St-Onge L, Hamel A, Heon R (2003) Appl Optics 42:5971–5977

    ADS  CAS  Google Scholar 

  22. Peter L, Sturm V, Noll R (2003) Appl Optics 42:6199–6204

    ADS  CAS  Google Scholar 

  23. Aragón C, Bengoechea J, Aguilera JA (2001) Spectrochim Acta B 56:619–628

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S. Janssen, ThyssenKrupp Stahl AG (TKS), Germany for providing the different sheet steel samples and for sample analysis. Financial support by the European Coal and Steel Community (ECSC) and the Fraunhofer Society is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Balzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balzer, H., Hölters, S., Sturm, V. et al. Systematic line selection for online coating thickness measurements of galvanised sheet steel using LIBS. Anal Bioanal Chem 385, 234–239 (2006). https://doi.org/10.1007/s00216-006-0348-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0348-y

Keywords

Navigation