Skip to main content
Log in

Development and application of a simple routine method for the determination of selenium in serum by octopole reaction system ICPMS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to develop an inductively coupled plasma mass spectrometry (ICPMS) method for robust and simple routine determination of selenium in serum. Polyatomic interferences on 76Se, 77Se, and 78Se were removed by applying an octopole reaction system ICPMS with the reaction cell pressurized with H2 gas. We developed a novel simple optimization routine for the H2 gas flow based on a signal-to-noise ratio (SNR) calculation of the selenium signal measured in a single selenium standard. The optimum H2 flow was 2.9 mL min−1. The selenium content in serum was determined after a 50-fold dilution with 0.16 M HNO3 and quantified by using addition calibration and gallium as an internal standard. The method detection limit was 0.10 μg L−1 for 76Se and 78Se and 0.13 μg L−1 for 77Se. Human serum samples from a case-control study investigating if selenium was associated with risk of colorectal adenoma were analyzed. The average selenium concentration for the control group (n=768) was 137.1 μg L−1 and the range was 73.4–305.5 μg L−1. The within-batch repeatability (a batch is ten samples) estimated from 182 replicate analyses was 6.3% coefficient of variation (CV), whereas the between-batch repeatability was 7.4% CV estimated from 361 replicates between batches. The method accuracy was evaluated by analysis of a human serum certified reference material (Seronorm Serum level II, Sero A/S, Norway). There was a fairly good agreement between the measured average of 145±3 μg L−1 (n=36) and the certified value of 136±9 μg L−1. In addition the method was successfully applied for analysis of zinc serum concentrations without further optimization. For the Seronorm certified reference material a value of 911±75 μg L−1 (n=31) for zinc was obtained, which corresponds well to the certified zinc value of 920±60 μg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Combs GFJ, Clark LC, Turnbull BW (2001) Biofactors 14:153–159

    Google Scholar 

  2. Vinceti M, Rovesti S, Bergomi M, Vivoli G (2000) Tumori 86:105–118

    Google Scholar 

  3. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C (2001) Trial J Urol 166:1311–1315

    Article  CAS  PubMed  Google Scholar 

  4. Willet W (1998) Nutritional epidemiology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  5. Early DS, Hill K, Burk R, Palmer I (2002) Am J Gastroenterol 97:745–748

    Google Scholar 

  6. Ghadirian P, Maisonneuve P, Perret C, Kennedy G, Boyle P, Krewski D, Lacroix A (2000) Cancer Detect Prev 24:305–313

    Google Scholar 

  7. Knekt P, Aromaa A, Maatela J, Alfthan G, Aaran RK, Hakama M, Hakulinen T, Peto R, Teppo L (1990) J Natl Cancer Inst 82:864–868

    Google Scholar 

  8. Van den Brandt PA, Goldbohm RA, Bode P, Dorant E, Hermus RJ, Sturmans F (1993) J Natl Cancer Inst 85:224–229

    Google Scholar 

  9. Wallace K, Byers T, Morris JS, Cole BF, Greenberg ER, Baron J, Gudino A, Spate V, Karagas M (2003) Cancer Epidemiol Biomarkers Prev 12:464–467

    Google Scholar 

  10. Rose G (1981) Br Med J (Clin Res Ed) 282:1847–1851

    Google Scholar 

  11. Welz B, Sperling M (1999) Atomic absorption spectrometry, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  12. Taylor HE, Huff RA, Montaser A (1998) Novel applications of ICPMS. In: Montaser A (ed) Inductively coupled plasma mass spectrometry, 1st edn. Wiley-VCH, New York

    Google Scholar 

  13. Vanhoe H, Goossens J, Moens L, Dams R (1994) J Anal At Spectrom 9:177–185

    Article  Google Scholar 

  14. Rodushkin I, Ödman F, Olofsson R, Axelsson MD (2000) J Anal At Spectrom 15:937–944

    Article  CAS  Google Scholar 

  15. Feldmann I, Jakubowski N, Stuewer D (1999) Fresenius J Anal Chem 365:415–421

    Article  Google Scholar 

  16. Feldmann I, Jakubowski N, Thomas C, Stuewer D (1999) Fresenius J Anal Chem 365:422–428

    Article  Google Scholar 

  17. Boulyga SF, Becker JS (2001) Fresenius J Anal Chem 370:618–623

    Article  Google Scholar 

  18. Sloth JJ, Larsen EH, Bügel S, Moesgaard S (2003) J Anal At Spectrom 18:317–322

    Article  Google Scholar 

  19. Featherstone AM, Townsend AT, Jacobson GA, Peterson GM (2004) Anal Chim Acta 512:319–327

    Article  Google Scholar 

  20. Moens L, Verrept P, Dams R, Greb U, Jung G, Laser B (1994) J Anal At Spectrom 9:1075–1078

    Article  Google Scholar 

  21. Larsen EH, Stürup S (1994) J Anal At Spectrom 9:1099–1105

    Article  Google Scholar 

  22. Allain P, Jaunault L, Mauras Y, Mermet JM, Delaporte T (1991) Anal Chem 63:1497–1498

    Google Scholar 

  23. Goossens J, VanHaecke F, Moens L, Dams R (1993) Anal Chim Acta 280:137–143

    Article  Google Scholar 

  24. Nelms S (2003) Am Biotechnol Lab 39–41

  25. Nixon DE, Neubauer KR, Eckdahl SJ, Butz JA, Burritt MF (2003) Spectrochim Acta Part B 58:97–110

    Article  Google Scholar 

  26. Labat L, Dehon B, Lhermitte M (2003) Anal Bioanal Chem 376:270–273

    Google Scholar 

  27. Reyes LH, Gayon JMM, Alonso JIG, Sanz-Medel A (2003) J Anal At Spectrom 18:11–16

    Article  Google Scholar 

  28. Peters U, Hayes RB, Chatterjee N, Church TR, Mayo C, Stürup S, Chanock SJ, Foster CB (2004) Serum selenium and genetic variation in the selenoprotein GPX1 and risk of colorectal adenoma. American Association for Cancer Research, Orlando, Florida

    Google Scholar 

  29. Gohagen JK, Prorok PC, Hayes RB, Kramer BS (2000) Control Clin Trials 21:251S–272S

    Article  Google Scholar 

  30. Hayes RB, Reding D, Kopp W, Subar AF, Bhat N, Rothman N (2000) Control Clin Trials 21:349S–355S

    Article  Google Scholar 

  31. Douglas DJ, Tanner SD (1998) Fundamental considerations in ICPMS. In: Montaser A (ed) Inductively coupled plasma mass spectrometry, 1st edn. Wiley-VCH, New York

    Google Scholar 

  32. Caroli S, Alimonti E, Coni F, Petrucci F, Senofonte O, Violante N (1994) Crit Rev Anal Chem 24:363–398

    CAS  Google Scholar 

  33. Ingle C, Appelblad PK, Dexter M, Reid H, Sharp BL (2001) J Anal At Spectrom 16:1076–1084

    Article  Google Scholar 

  34. Yamada N, Takahashi J, Sakata K (2002) J Anal At Spectrom 17:1213–1222

    Article  Google Scholar 

  35. van Veen EH, Bosch S, de Loos-Vollebregt MTC (1996) Spectrochim Acta Part B 51:591–608

    Article  Google Scholar 

  36. FAO/WHO (2002) Human vitamin and mineral requirements. World Health Organization (WHO), Rome

    Google Scholar 

  37. Zaichick V, Sviridova TV, Zaichick SV (1997) Int Urol Nephrol 29:565–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stürup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stürup, S., Hayes, R.B. & Peters, U. Development and application of a simple routine method for the determination of selenium in serum by octopole reaction system ICPMS. Anal Bioanal Chem 381, 686–694 (2005). https://doi.org/10.1007/s00216-004-2946-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2946-x

Keywords

Navigation