Skip to main content
Log in

The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present work, we have investigated the possibility of forming protonated urea in the gas phase by means of chemical dynamics simulations. Based on previously published highly correlated quantum chemistry calculations (Astron. Astrophys. 610, A26, 2018), we have considered the reaction between the high energy tautomer of protonated hydroxylamine (NH2OH2+) and neutral formamide. Simulations were made at MP2 level and using three semi-empirical Hamiltonians which allow better statistics. In particular, we have considered the PM6 method and two different dispersion corrections. These more approximated methods show results which are in relatively good agreement with MP2, in particular for the reaction which is potentially responsible for the urea synthesis. Results show that precursor of protonated urea can be formed but this species will evolve with difficulty into the structure of urea in ultra-vacuum conditions. It is likely that the presence of mantle ice would facilitate the overall reaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menten KM, Wyrowski F (2011) In: Yamada KMT, Winnewisser G (eds) Interstellar molecules. Springer, Berlin, pp 27–42

    Chapter  Google Scholar 

  2. Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258–280

    Article  PubMed  CAS  Google Scholar 

  3. Ohishi M (2016) J Phys Conf Ser 728:052002

    Article  Google Scholar 

  4. Larsson M, Geppert WD, Nyman G (2012) Rep Prog Phys 75:066901

    Article  PubMed  CAS  Google Scholar 

  5. Rubin RH, Swenson GW Jr, Solomon RC, Flygare HL (1971) Astrophys J 169:L39–L44

    Article  CAS  Google Scholar 

  6. Turner BE, Liszt HS, Kaifu N, Kisliakov AG (1975) Astrophys J 201:L149–L152

    Article  CAS  Google Scholar 

  7. Hollis JM, Lovas FJ, Remijan AJ, Jewell PR, Ilyushin VV, Kleiner I (2006) Astrophys J 643:L25–L28

    Article  CAS  Google Scholar 

  8. Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Science 349:aab0689

    Article  PubMed  Google Scholar 

  9. Remijan AJ, Hollis JM, Lovas FJ, Stork WD, Jewell PR, Meier PR (2008) Astrophys J 675:L85–L88

    Article  CAS  Google Scholar 

  10. Kaifu N, Morimoto M, Nagane K, Akabane K, Iguchi T, Takagi K (1974) Astrophys J 191:L135–L137

    Article  CAS  Google Scholar 

  11. Fourikis N, Takagi K, Morimoto M (1974) Astrophys J 191:L139–L141

    Article  CAS  Google Scholar 

  12. Belloche A, Menten KM, Comito C, Müller HSP, Schilke P, Ott J, Thorwirth S, Hieret C (2008) Astron Astrophys 482:179–196

    Article  CAS  Google Scholar 

  13. Belloche A, Meshcheryakov AA, Garrod RT, Ilyushin VV, Alekseev EA, Motiyenko RA, Margulès L, Müller HSP, Menten KM (2017) Astron Astrophys 601:A49

    Article  Google Scholar 

  14. Remijan AJ, Snyder LE, McGuire BA, Kuo H-L, Looney LW, Friedel DN, Golubiatnikov GY, Lovas FJ, Ilyushin VV, Alekseev EA, Dyubko SF, McCall BJ, Hollis JM (2014) Astrophys J 783:77

    Article  Google Scholar 

  15. McGuire BA, Burkhardt AM, Kalenski S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC (2018) Science 359:202–205

    Article  PubMed  CAS  Google Scholar 

  16. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Chem Soc Rev 41:5526–5565

    Article  PubMed  CAS  Google Scholar 

  17. Saitta AM, Saija F (2014) Proc Natl Acad Sci USA 111:13768–13773

    Article  Google Scholar 

  18. Kaiser RI (2002) Chem Rev 102:1309–1358

    Article  PubMed  CAS  Google Scholar 

  19. Geppert WD, Larsson M (2013) Chem Rev 113:8872–8905

    Article  PubMed  CAS  Google Scholar 

  20. de Marcellus P, Meinert C, Myrgorodsk I, Nahon L, Buhse T, Le d’Hendecourt LS, Meierhenrich UJ (2015) Proc Natl Acad Sci USA 112:965–970

    Article  PubMed  Google Scholar 

  21. Forstel M, Maksyutenko P, Jones BM, Sun B-J, Chang AHH, Kaiser RI (2016) Chem Commun 52:741–744

    Article  CAS  Google Scholar 

  22. Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP (2009) Astrobiology 9:683–695

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Lazcano Y, Maté B, Herrero VJ, Escribano R, Galvez O (2014) Phys Chem Chem Phys 16:3371–3380

    Article  PubMed  CAS  Google Scholar 

  24. Herbst E (1982) Chem Phys 65:185–195

    Article  Google Scholar 

  25. Ferriere KM (2001) Rev Mod Phys 73:1031–1066

    Article  CAS  Google Scholar 

  26. Barone V, Latouche C, Skouteris D, Vazart F, Balucani N, Ceccarelli C, Lefloch B (2015) Mon Not R Astron Soc 453:L31

    Article  CAS  Google Scholar 

  27. Vazart F, Calderini D, Puzzarini C, Skouteris D, Barone V (2016) J Chem Theory Comput 12:5385–5397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Skouteris D, Balucani N, Ceccarelli C, Vazart F, Puzzarini C, Barone V, Codella C, Lefloch B (2018) Astrophys J 854:135

    Article  Google Scholar 

  29. Redondo P, Barrientos C, Largo A (2014) Astrophys J 793:32

    Article  Google Scholar 

  30. Redondo P, Barrientos C, Largo A (2014) Astrophys J 780:181

    Article  Google Scholar 

  31. Barrientos C, Redondo P, Largo L, Rayon VM, Largo A (2012) Astrophys J 748:99

    Article  Google Scholar 

  32. Snow JL, Orlova G, Blagojevic V, Bohme DK (2007) J Am Chem Soc 129:9910–9917

    Article  PubMed  CAS  Google Scholar 

  33. Siro Brigiano F, Jeanvoine Y, Largo A, Spezia R (2018) Astron Astrophys 610:A26

    Article  Google Scholar 

  34. Spezia R, Jeanvoine Y, Hase WL, Song K, Largo A (2016) Astrophys J 826:107

    Article  Google Scholar 

  35. Jeanvoine Y, Largo A, Hase WL, Spezia R (2018) J Phys Chem A 122:869–877

    Article  PubMed  CAS  Google Scholar 

  36. Pulliam RL, McGuire BA, Remijan AJ (2012) Astrophys J 751:1

    Article  Google Scholar 

  37. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  PubMed  CAS  Google Scholar 

  38. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  39. Sato F, Hasegawa T, Whiteoak JB, Miyawaki R (2000) Astrophys J 535:857

    Article  CAS  Google Scholar 

  40. Dowell CD, Hildebrand RH, Schleuning DA, Vaillancourt JE, Dotson JL, Novak G, Renbarger T, Houde M (1998) Astrophys J 504:588

    Article  Google Scholar 

  41. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  43. Stewart JJP, Fiedler LJ, Zheng J, Rossi I, Hu W-P, Lynch GC, Liu Y-P, Zhang P, Chuang Y-Y, Pu J, Li J, Fast PL, Cramer CJ, Gao J, Truhlar DG, MOPAC version 5.022mn based on MOPAC 5.0 by James J. P. Stewart

  44. Song K, Spezia R (2018) Theoretical mass spectrometry. De Gruyter, Berlin

    Book  Google Scholar 

  45. Hase WL, Ludlow DM, Wolf RJ, Schlick T (1981) J Phys Chem 85:958–968

    Article  CAS  Google Scholar 

  46. Verlet L (1967) Phys Rev 159:98

    Article  CAS  Google Scholar 

  47. Hu X, Hase WL, Pirraglia T (1991) J Comput Chem 12:1014–1024

    Article  CAS  Google Scholar 

  48. Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Linde SRV, Varandas A et al (1996) QCPE Bull 16:671

    Google Scholar 

  49. Su T, Chesnavich WJ (1982) J Chem Phys 75:5183–5185

    Article  Google Scholar 

  50. http://kida.obs.u-bordeaux1.fr/

  51. Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, New York

    Google Scholar 

  52. Beyer T, Swinehart DF (1973) Commun ACM 16:379

    Article  Google Scholar 

  53. Zhu L, Hase WL (1994) QCPE Bull 14:664

    Google Scholar 

  54. Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL (2017) J Am Chem Soc 139:3570–3590

    Article  PubMed  CAS  Google Scholar 

  55. Cao J, Voth GA (1994) J Chem Phys 100:5093

    Article  CAS  Google Scholar 

  56. Craig IR, Manolopoulos DE (2004) J Chem Phys 121:3368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank ANR DynBioReact (Grant No. ANR-14-CE06-0029-01) and CNRS program INFINITI (Project ASTROCOL) for financial support. This article is dedicated to the memory of Dr. János G. ÁNGYÁN, who directed the Ph. D. Thesis of one of us (YJ). We hope we will pass on the values and commitment we learned from him to those we work with and hopefully we will be able to do it with János’s humor and joy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yannick Jeanvoine or Riccardo Spezia.

Additional information

Published as part of the special collection of articles In Memoriam of János Ángyán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanvoine, Y., Spezia, R. The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products. Theor Chem Acc 138, 1 (2019). https://doi.org/10.1007/s00214-018-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2385-y

Keywords

Navigation