Skip to main content
Log in

Understanding the reaction mechanism of the Lewis acid (MgBr2)-catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the non-catalysed and the MgBr2-catalysed [3+2] cycloaddition (32CA) reactions between C-methoxycarbonyl nitrone and 2-propen-1-ol has been theoretically investigated within the molecular electron density theory using DFT methods at the B3LYP/6-31G(d) computational level. Analysis of DFT reactivity indices allows explaining the role of the MgBr2 Lewis acid in the catalysed 32CA reaction. The 32CA reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol takes place with a relative high activation enthalpy, 13.5 kcal mol−1, as a consequence of the non-polar character of this zw-type 32CA reaction. Coordination of the MgBr2 LA to C-methoxycarbonyl nitrone accelerates the corresponding zw-type 32CA reaction by taking place through a polar mechanism and with lower activation enthalpy, 8.5 kcal mol−1. Both 32CA reactions, which take place through a one-step mechanism, are completely meta regioselective and present low exo stereoselectivity, which increases in the catalysed process. Energy and non-covalent interaction analyses at the transition-state structures indicate that the formation of an intramolecular H–Br hydrogen bond in the catalysed process could be responsible for the exo selectivity experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Scheme 7
Fig. 2
Scheme 8
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huisgen R (1963) Angew Chem Int Ed 2:565–598

    Article  Google Scholar 

  2. Padwa A (1984) 1, 3-Dipolar cycloaddition chemistry, vol 1-2. Wiley Interscience, New York

    Google Scholar 

  3. Padwa A (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products, vol 59. Wiley, New York

    Book  Google Scholar 

  4. Gothelf KV, Jorgensen KA (1998) Chem Rev 98:863–909

    Article  CAS  Google Scholar 

  5. Tufariello JJ (1984) 1,3-Dipolar cycloaddition chemistry. A. Padwa, Wiley, New York

  6. Torssell KBG (1988) Nitrile oxides, nitrones and nitronates in organic synthesis. VCH, New York

    Google Scholar 

  7. Tufariello JJ (1979) Acc Chem Res 12:396–403

    Article  CAS  Google Scholar 

  8. Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576–3583

    Article  CAS  Google Scholar 

  9. Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273

    Article  CAS  Google Scholar 

  10. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532

    Article  CAS  Google Scholar 

  11. Domingo LR (2016) Molecules 21:1319

    Article  Google Scholar 

  12. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  13. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748

    Article  Google Scholar 

  14. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  15. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  16. Ríos-Gutiérrez M, Domingo LR, Pérez P (2015) RSC Adv 5:84797–84809

    Article  Google Scholar 

  17. Domingo LR, Aurell MJ, Pérez P (2015) Tetrahedron 71:1050–1057

    Article  CAS  Google Scholar 

  18. Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519–4525

    Article  CAS  Google Scholar 

  19. Kanemasa S (2010) Heterocycles 82:87–200

    Article  CAS  Google Scholar 

  20. Simonsen KB, Bayón P, Hazell RG, Gothelf KV, Jorgensen KA (1999) J Am Chem Soc 121:3845–3853

    Article  CAS  Google Scholar 

  21. Domingo LR (2000) Eur J Org Chem 2265–2272

  22. Sousa CAD, Vale MLC, Garcia-Mera X, Rodriguez-Borges JE (2012) Tetrahedron 68:1682–1687

    Article  CAS  Google Scholar 

  23. Nacereddinea AK, Layeb H, Chafaa F, Yahia W, Djerourou A, Domingo LR (2015) RSC Adv 5:64098–64105

    Article  Google Scholar 

  24. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  25. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  26. Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  27. S. Kanemasa S, Tsuruoka T (1995) Chem Lett 49–50

  28. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio Mol Orbital Theory. Wiley, New York

    Google Scholar 

  32. Schlegel HB (1982) J Comput Chem 2:214–218

    Article  Google Scholar 

  33. Schlegel HB (1994) In modern electronic structure theory. In: Yarkony DR (ed) World Scientific Publishing, Singapore

  34. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  35. González C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  Google Scholar 

  36. González C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  Google Scholar 

  37. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  38. Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions—computational approach. Ellis Horwood, London

    Google Scholar 

  39. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  40. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  41. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  42. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  44. Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theor Comput 9:3263–3266

    Article  CAS  Google Scholar 

  45. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theor Comput 7:625–632

    Article  CAS  Google Scholar 

  46. Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford

  47. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7514

    Article  CAS  Google Scholar 

  48. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  49. Kohn W, Sham L (1965) J Phys Rev 140:1133–1138

    Article  Google Scholar 

  50. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  51. Domingo LR, Chamorro E,Pérez P (2009) Eur J Org Chem 3036–3044

  52. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  53. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  54. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct (Theochem) 865:68–72

    Article  CAS  Google Scholar 

  55. Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611–618

    Article  CAS  Google Scholar 

  56. Ríos-Gutiérrez M, Pérez P, Domingo LR (2015) RSC Adv 5:58464–58477

    Article  Google Scholar 

  57. Bader RFW, Essén HJ (1984) Chem Phys 80:1943–1960

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Economy and Competitiveness of the Spanish Government; Project CTQ2013-45646-P. M. Ríos-Gutiérrez also thanks the Ministry of Economy and Competitiveness for a pre-doctoral contract co-financed by the European Social Fund (BES-2014-068258). A.I. Adjieufack, I. M. Ndassa and J. K. Mbadcam are grateful to the Ministry of Higher Education of the Republic of Cameroon to finance the project with modernisation research allowance. The authors also thank the University of Yaoundé I and High Teacher Training College (Cameroon) for infrastructural facilities for generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. Ndassa or L. R. Domingo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adjieufack, A.I., Ndassa, I.M., Mbadcam, J.K. et al. Understanding the reaction mechanism of the Lewis acid (MgBr2)-catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study. Theor Chem Acc 136, 5 (2017). https://doi.org/10.1007/s00214-016-2028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2028-0

Keywords

Navigation