Skip to main content
Log in

Structural and thermodynamic aspects of Li n @C x endohedral metallofullerenes: a DFT approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have determined the electronic, thermodynamic and geometrical properties of Li n @C x fullerenes by employing DFT study, which are better known as endohedral metallofullerenes (EMFs). In this work, we have considered C20, C32, C42 and C60 fullerenes and predicted the maximum number of Li atoms that can be encapsulated in their respective cavities. The identification of the geometrical structures of Li n clusters formed inside the fullerene cavity has been also included in our study. The binding energies as well as the thermodynamic properties (enthalpy, entropy and Gibbs free energy) of each EMF have been determined to acquire an idea about the stability of the EMFs. Further to ensure the stability of the EMFs, we have also calculated the deformation energy of the EMFs with respect to normal C60. By analyzing the results obtained from our calculation, we have shown that our results are in reasonably good agreement with the earlier available theoretical results. We have also performed the NPA analysis to calculate the charges on both the fullerene surface and the encapsulated Li n clusters for each Li n @C x and further investigated its variation with respect to n and x. Energy transfer phenomena from \({\text{MO}}_{{{\text{C}} - {\text{C}}}} \to {\text{LP}}_{\text{Li}}^{*}\) have been observed by employing second-order perturbation analysis. Overall, the work has provided a comprehensive idea about the characteristics and stability of all the Li n @C x -type EMFs which can be set as a benchmark for further work on the EMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779

    Article  CAS  Google Scholar 

  3. Gromov A, Lassesson A, Jönsson M, Ostrovskii DI Campbell EEB IR spectroscopy investigation of purified endohedral Li@C60 and Li@C70. In: Fullerenes, vol 12: the exciting world of nanocages and nanotubes, PV 2002-12

  4. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) Angew Chem Int Ed 40:397

    Article  CAS  Google Scholar 

  5. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Chem Phys Chem 8:537

    CAS  Google Scholar 

  6. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844

    Article  CAS  Google Scholar 

  7. Wang TS, Feng L, Wu JY, Xu W, Xiang JF, Tan K, Ma YH, Zheng JP, Jiang L, Lu X, Shu CY, Wang CR (2010) J Am Chem Soc 132:16362

    Article  CAS  Google Scholar 

  8. Popov AA, Yang S, Dunsch L (2013) Chem Rev 113:5989

    Article  CAS  Google Scholar 

  9. Joslin CG, Yang J, Gray CG, Goldman S, Poll JD (1993) Chem Phys Lett 208:86

    Article  CAS  Google Scholar 

  10. Johnson RD, Vries MSD, Salem J, Bethune DS, Yannoni CS (1992) Nature 355:239

    Article  CAS  Google Scholar 

  11. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142

    Article  CAS  Google Scholar 

  12. Wan TSM, Zhang HW, Nakane T, Xu ZD, Inakuma M, Shinohara H, Kobayashi K, Nagase S (1998) J Am Chem Soc 120:6806

    Article  CAS  Google Scholar 

  13. Haufe O, Hecht M, Grupp A, Mehring M, Jansen M (2005) Z Anorg Allg Chem 631:126

    Article  CAS  Google Scholar 

  14. Reich A, Panthofer M, Modrow H, Wedig U, Jansen M (2004) J Am Chem Soc 126:14428

    Article  CAS  Google Scholar 

  15. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) Nat Chem 2:678

    Article  CAS  Google Scholar 

  16. Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H, Kasama Y, Kitaura R, Shinohara H (2012) Angew Chem Int Ed 51:3377

    Article  CAS  Google Scholar 

  17. Kaplan T, Rasolt M, Karimi M, Mostoller M (1993) J Phys Chem 97:6124

    Article  CAS  Google Scholar 

  18. Joslin CG, Gray CG, Goldman S, Yang J, Poll JD (1993) Chem Phys Lett 215:144

    Article  CAS  Google Scholar 

  19. Kusch C, Krawez N, Tellgmann R, Winter B, Campbell EEB (1998) Appl Phys A 66:293

    Article  CAS  Google Scholar 

  20. Gromov A, Lassesson A, Jönsson M, Ostrovskii DI, Campbell EEB (2002) Curr Appl Phys 2:51

    Article  Google Scholar 

  21. Slanina Z, Uhlík F, Chow TJ, In: Fullerenes, vol 13: fullerenes and nanotubes: the building blocks of next generation nanodevices, PV 2003-15

  22. Popok VN, Azarko II, Gromov AV, Jonsson M, Lassesson A, Campbell EEB (2005) Sol Stat Commun 133:499

    Article  CAS  Google Scholar 

  23. Lassesson A, Hansen K, Jonsson M, Gromov A, Campbell EEB, Boyle M, Pop D, Schulz CP, Hertel IV, Taninaka A, Shinohara H (2005) Eur Phys J D 34:205

    Article  CAS  Google Scholar 

  24. Kobayashi K, Nagase S (2002) In: Endofullerenes—a new family of carbon clusters 99

  25. Zhaoa J, Huanga X, Jinb P, Chenc Z (2015) Coord Chem Rev 289–290:315

    Article  Google Scholar 

  26. Meng J, Liang X, Chen X, Zhao Y (2013) Integr Biol 5:43

    Article  CAS  Google Scholar 

  27. Slanina Z, Uhlík F, Lee SL, Adamowicz L, Nagase S (2006) J Comput Methods Sci Eng 6:243

    CAS  Google Scholar 

  28. Slanina Z, Lee SL, Uhlík F, Adamowicz L, Nagase S (2007) Theor Chem Acc 117:315

    Article  CAS  Google Scholar 

  29. Denis PA (2012) J Phys Org Chem 25:322

    Article  CAS  Google Scholar 

  30. Pavanello M, Jalbout AF, Trzaskowski B, Adamowicz L (2007) Chem Phys Lett 442:339

    Article  CAS  Google Scholar 

  31. Sosnowska NS, Mazurek AP (2013) Chem Phys Lett 580:53

    Article  Google Scholar 

  32. Varganov SA, Avramov PV, Ovchinnikov SG (2000) Phys Solid State 42:388

    Article  CAS  Google Scholar 

  33. Bol A, Stott MJ, Alonso JA (1997) Physica B 240:154

    Article  CAS  Google Scholar 

  34. Slanina Z, Uhlík F, Lee SL, Adamowicz L, Nagase S (2008) Int J Mol Sci 9:1841

    Article  CAS  Google Scholar 

  35. Slanina Z, Uhlik F, Lee SL, Adamowicz L, Nagase S (2008) Chem Phys Lett 463:121

    Article  CAS  Google Scholar 

  36. Wan Z, Christian JF, Anderson SL (1992) Phys Rev Lett 69:1352

    Article  CAS  Google Scholar 

  37. Wan Z, Christian JF, Basir Y, Anderson SL (1993) J Chem Phys 99:5858

    Article  CAS  Google Scholar 

  38. Gong J, Zhang J, Lin S (1998) Nucl Instrum Methods Phys Res, Sect B 135:66

    Article  CAS  Google Scholar 

  39. Frischv MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CT

  40. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  42. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  43. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    Article  CAS  Google Scholar 

  44. Brito BGA, Cândido L, Rabelo JNT, Hai GQ (2014) Chem Phys Lett 616–17:212

    Article  Google Scholar 

  45. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  46. Reed E, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TD, TB and TA are grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for providing them research fellowships. AKD gratefully acknowledges a research Grant under Scheme Number: SB/S1/PC-79/2012 from the Department of Science and Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit K. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, T., Saha, J.K., Banu, T. et al. Structural and thermodynamic aspects of Li n @C x endohedral metallofullerenes: a DFT approach. Theor Chem Acc 135, 167 (2016). https://doi.org/10.1007/s00214-016-1919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1919-4

Keywords

Navigation