Skip to main content
Log in

Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The coefficients of full configuration interaction wave functions (FCI) for N-electron systems expanded in N-electron Slater determinants depend on the orthonormal one-particle basis chosen although the total energy remains invariant . Some bases result in more compact wave functions, i.e. result in fewer determinants with significant expansion coefficients. In this work, the Shannon entropy, as a measure of information content, is evaluated for such wave functions to examine whether there is a relationship between the FCI Shannon entropy of a given basis and the performance of that basis in truncated CI approaches. The results obtained for a set of randomly picked bases are compared to those obtained using the traditional canonical molecular orbitals, natural orbitals, seniority minimising orbitals and a basis that derives from direct minimisation of the Shannon entropy. FCI calculations for selected atomic and molecular systems clearly reflect the influence of the chosen basis. However, it is found that there is no direct relationship between the entropy computed for each basis and truncated CI energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ivanic J, Ruedenberg K (2001) Identification of deadwood in configuration spaces through general direct configuration interaction. Theor Chem Acc 106(5):339–351

    Article  CAS  Google Scholar 

  2. Sherill CD, Schaefer HF (1999) The configuration interaction method: advances in highly correlated approaches. Adv Quantum Chem 34:143–269

    Article  Google Scholar 

  3. Evangelista FA (2014) Adaptive multiconfigurational wave functions. J Chem Phys 140(12):124114

    Article  Google Scholar 

  4. Knowles PJ (2015) Compressive sampling in configuration interaction wavefunctions. Mol Phys 113(13–14):1655–1660

    Article  CAS  Google Scholar 

  5. Löwdin PO (1955) Quantum theory of many-particle systems.1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97(6):1474–1489

    Article  Google Scholar 

  6. Coleman AJ (1963) Structure of fermion density matrices. Rev Mod Phys 35(3):668–687

    Article  Google Scholar 

  7. Bender CF, Davidson ER (1966) A natural orbital based energy calculation for helium hydride and lithium hydride. J Phys Chem 70(8):2675–2685

    Article  CAS  Google Scholar 

  8. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New York

    Google Scholar 

  9. Shavitt I (1998) The history and evolution of configuration interaction. Mol Phys 94(1):3–17

    Article  CAS  Google Scholar 

  10. Kobe DH (1969) Natural orbitals, divergences, and variational principles. J Chem Phys 50(12):5183–5194

    Article  CAS  Google Scholar 

  11. Shavitt I, Rosenberg BJ, Palalikit S (1976) Comparison of configuration interaction expansions based on different orbital transformations. Int J Quantum Chem Symp 10:33–46

    Article  CAS  Google Scholar 

  12. Lam B, Schmidt MW, Ruedenberg K (1985) Intraatomic correlation correction in the FORS model. J Phys Chem 89(11):2221–2235

    Article  CAS  Google Scholar 

  13. Schmidt MW, Gordon MS (1998) The construction and interpretation of MCSCF wavefunctions. Ann Rev Phys Chem 49:233–266

    Article  CAS  Google Scholar 

  14. Bytautas L, Ivanic J, Ruedenberg K (2003) Split-localized orbitals can yield stronger configuration interaction convergence than natural orbitals. J Chem Phys 119(16):8217–8224

    Article  CAS  Google Scholar 

  15. Giesbertz KJH (2014) Are natural orbitals useful for generating an efficient expansion of the wave function? Chem Phys Lett 591:220–226

    Article  CAS  Google Scholar 

  16. Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB (2013) Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions. J Chem Phys 139(8):084103

    Article  Google Scholar 

  17. Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB (2014) Configuration interaction wave functions: A seniority number approach. J Chem Phys 140(23):234103

    Article  Google Scholar 

  18. Alcoba DR, Torre A, Lain L, Oña OB, Capuzzi P, Van Raemdonck M, Bultinck P, Van Neck D (2014) A hybrid configuration interaction treatment based on seniority number and excitation schemes. J Chem Phys 141(24):244118

    Article  Google Scholar 

  19. Poelmans W, Van Raemdonck M, Verstichel B, De Baerdemacker S, Torre A, Lain L, Massaccesi GE, Alcoba DR, Bultinck P, Van Neck D (2015) Variational optimization of the second-order density matrix corresponding to a seniority-zero configuration interaction wave function. J Chem Theory Comput 11(9):4064–4076

    Article  CAS  Google Scholar 

  20. Ring P, Schuck P (1980) The nuclear many-body problem. Springer, New York

    Book  Google Scholar 

  21. Koltun DS, Eisenberg JM (1988) Quantum mechanics of many degrees of freedom. Wiley, New York

    Google Scholar 

  22. Alcoba DR, Bochicchio RC, Lain L, Torre A (2006) On the definition of the effectively unpaired electron density matrix: a similarity measure approach. Chem Phys Lett 429(1–3):286–288

    Article  CAS  Google Scholar 

  23. Karafiloglou P (2009) An efficient generalized polyelectron population analysis in orbital spaces: the hole-expansion methodology. J Chem Phys 130(16):164103

    Article  CAS  Google Scholar 

  24. Bytautas L, Henderson TM, Jiménez-Hoyos CA, Ellis JK, Scuseria GE (2011) Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy. J Chem Phys 135(4):044119

    Article  Google Scholar 

  25. Lain L, Torre A, Alcoba DR, Oña OB, Massaccesi GE (2015) A study of the compactness of wave functions based on shannon entropy indices: a seniority number approach. Theor Chem Acc 134(7):85

    Article  Google Scholar 

  26. Weinhold F, Wilson EB (1967) Reduced density matrices of atoms and molecules. I. The 2 matrix of double-occupancy, configuration-interaction wavefunctions for singlet states. J Chem Phys 46(7):2752–2758

    Article  CAS  Google Scholar 

  27. Paldus J, Jeziorski B (1988) Clifford-algebra and unitary-group formulations of the many-electron problem. Theor Chim Acta 73(2–3):81–103

    Article  CAS  Google Scholar 

  28. Lain L, Torre A, Karwowski J, Valdemoro C (1988) Matrix-elements of the 3rd-order spin-adapted reduced hamiltonian. Phys Rev A 38(6):2721–2728

    Article  Google Scholar 

  29. Torre A, Lain L, Millan J (1993) Calculation of traces of p-order replacement operators over n-electron spin-adapted spaces. Phys Rev A 47(2):923–928

    Article  Google Scholar 

  30. Lain L, Torre A (1995) Direct computation of traces of p-order replacement operators over n-electron spin-adapted spaces. Phys Rev A 52(3):2446–2448

    Article  CAS  Google Scholar 

  31. Van Raemdonck M, Alcoba DR, Poelmans W, De Baerdemacker S, Torre A, Lain L, Massaccesi GE, Van Neck D, Bultinck P (2015) Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions. J Chem Phys 143(10):104106

    Article  Google Scholar 

  32. Subotnik JE, Shao YH, Liang WZ, Head-Gordon M (2004) An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals. J Chem Phys 121(19):9220–9229

    Article  CAS  Google Scholar 

  33. Mathai AM, Tathie PN (1988) Basic concepts in information theory and statistics. Wiley, New York

    Google Scholar 

  34. Pfeiffer PE (1978) Concepts of probability theory. Dover, New York

    Google Scholar 

  35. Ivanov VV, Lyakh DI, Adamowicz K (2005) New indices for describing the multi-configurational nature of the coupled cluster wave function. Mol Phys 103:2131–2139

    Article  CAS  Google Scholar 

  36. Collins DM (1993) Entropy maximizations on electron-density. Z Naturforschung A 48(1–2):68–74

    CAS  Google Scholar 

  37. Esquivel RO, Rodíguez AL, Sagar RP, Hô M, Smith VH (1996) Physical interpretation of information entropy: numerical evidence of the Collins conjecture. Phys Rev A 54(1):259–265

    Article  CAS  Google Scholar 

  38. Smith GT, Schmider HL, Smith VH (2002) Electron correlation and the eigenvalues of the one-matrix. Phys Rev A 65(3):032508

    Article  Google Scholar 

  39. Ziesche P, Smith VH, Hô M, Rudin SP, Gersdorf P, Taut M (1999) The He isoelectronic series and the hooke’s law model: correlation measures and modifications of Collins’ conjecture. J Chem Phys 110(13):6135–6142

    Article  CAS  Google Scholar 

  40. Ramírez JC, Soriano C, Esquivel RO, Sagar RP, Hô M, Smith VH (1997) Jaynes information entropy of small molecules: numerical evidence of the Collins conjecture. Phys Rev A 56(6):4477–4482

    Article  Google Scholar 

  41. Esquivel RO, López-Rosa S, Dehesa JS (2015) Correlation energy as a measure of non-locality: quantum entanglement of helium-like systems. EPL 111(4):40009

    Article  Google Scholar 

  42. López-Rosa S, Esquivel RO, Plastino AR, Dehesa JS (2015) Quantum entanglement of helium-like systems with varying-Z: compact state-of-the-art CI wave functions. J Phys B At Mol Opt Phys 48(17):175002

    Article  Google Scholar 

  43. Delle Site L (2015) Shannon entropy and many-electron correlations: theoretical concepts, numerical results, and Collins conjecture. Int J Quantum Chem 115(19):1396–1404

    Article  CAS  Google Scholar 

  44. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  Google Scholar 

  45. de Andrade MD, Mundim KC, Malbouisson LAC (2005) Gsa algorithm applied to electronic structure: Hartree-Fock-GSA method. Int J Quantum Chem 103(5):493–499

    Article  Google Scholar 

  46. Raffenetti RC, Ruedenberg K, Janssen CL, Schaefer HF (1993) Efficient use of Jacobi rotations for orbital optimization and localization. Theor Chim Acta 86(1–2):149–165

    Article  CAS  Google Scholar 

  47. Johnson III RD (2006) Nist computational chemistry comparison and benchmark database. URL: http://cccbdb.nist.gov/vibscalejust.asp

  48. Roos JB, Larsson M, Larson A, Orel AE (2009) Dissociative recombination of BeH\(^+\). Phys Rev A 80(1):012501

    Article  Google Scholar 

  49. Chakrabarti K, Tennyson J (2012) Electron collisions with the BeH\(^+\) molecular ion in the R-matrix approach. Eur Phys J D 66(1):31

    Article  Google Scholar 

  50. Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJ, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam M, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian, inc., Wallingford CT Gaussian09, revision d.01

  51. Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer HF, King RA, Valeev EF, Sherrill CD, Crawford TD (2012) PSI4: an open-source ab initio electronic structure program. Wiley Interdiscip Rev Comput Mol Sci 2(4):556–565

    Article  CAS  Google Scholar 

  52. Löwdin PO, Shull H (1956) Natural orbitals in the quantum theory of 2-electron systems. Phys Rev 101(6):1730–1739

    Article  Google Scholar 

  53. Kong L, Valeev EF (2011) A novel interpretation of reduced density matrix and cumulant for electronic structure theories. J Chem Phys 134(21):214109

    Article  Google Scholar 

Download references

Acknowledgments

D.R.A. and P.B. acknowledge the Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and the FWO Vlaanderen (Belgium) for collaborative research grant VS.0001.14N. D.R.A. acknowledges the Universidad de Buenos Aires (Argentina) and the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) for research Grant Nos. UBACYT 20020100100197, PIP 11220090100061 and PIP 11220130100377CO. A.T. and L.L. acknowledge the Universidad del Pais Vasco (Spain) for research Grant Nos. GIU12/09 and UFI11/07. O.B.O. acknowledges the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) for research Grant Nos. 11220090100369 and 11220130100311CO. M.V.R., D.V.N. and P.B. acknowledge the support from the Research Foundation Flanders (FWO Vlaanderen). The computational resources and services used in this work were provided by the Universidad de Buenos Aires and the Universidad del Pais Vasco and the Stevin Supercomputer Infrastructure, provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, the Hercules Foundation and the Flemish Government-department EWI. M.V.R., P.B. and D.V.N. are members of the QCMM alliance Ghent-Brussels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Bultinck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcoba, D.R., Torre, A., Lain, L. et al. Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods. Theor Chem Acc 135, 153 (2016). https://doi.org/10.1007/s00214-016-1905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1905-x

Keywords

Navigation