Skip to main content
Log in

T-shaped phenol–benzene complexation driven by π-involved noncovalent interactions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Intermolecular interactions between phenol and benzene molecules with the T-shaped geometries could be diverse. They can be pursued via two structural series: one with benzene standing above phenol using one or two C–H bonds as the anchoring point and the other with phenol standing on top of benzene with either C–H or O–H bond as the leg. In this work, structure and interaction properties of these species are investigated at the DFT M06-2X/6-311++G(2d,2p) level of theory without and with the counterpoise correction. A total of twelve distinct isomers have been identified, eight of which were unveiled for the first time. It is found that π–π interactions play essential roles in stabilizing these conformations, while C–H/π, C–H···O van der Waals interactions, and C–H···O and O–H/π hydrogen bonds are also involved and positively contribute to the stability of these species. Our energy decomposition analysis shows that the driving force for the formation of these complexes arises from attractive electrostatic, exchange, polarization, and dispersion terms, balanced by the repulsion term. The dispersion effect plays a dominant role, but the electrostatic and exchange terms are also markedly significant. Their close relationships between one another have also been disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salonen LM, Ellermann M, Diederich F (2011) Angew Chem Int Ed 50:4808–4842

    Article  CAS  Google Scholar 

  2. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  3. Schneider H-J (2009) Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  4. Sinnokrot MO, Sherrill CD (2006) J Phys Chem A 110:10656–10668 (and references therein)

    Article  CAS  Google Scholar 

  5. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  6. van der Avoird A, Podeszwa R, Szalewicz K, Leforestier C, van Harrevelt R, Bunker PR, Schnell M, von Helden G, Meijer G (2010) Phys Chem Chem Phys 12:8219–8240

    Article  Google Scholar 

  7. Tsuzuki S, Uchimaru T, Sugawara K, Mikami M (2002) J Chem Phys 117:11216–11221

    Article  CAS  Google Scholar 

  8. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

    Article  CAS  Google Scholar 

  9. Sÿpirko V, Engkvist O, Soldan P, Selzle HL, Schlag EW, Hobza P (1999) J Chem Phys 111:572–582

    Article  Google Scholar 

  10. Smith T, Slipchenko LV, Gordon MS (2008) J Phys Chem A 112:5286–5294

    Article  CAS  Google Scholar 

  11. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893

    Article  CAS  Google Scholar 

  12. Singh NJ, Min SK, Kim DY, Kim KS (2009) J Chem Theory Comput 5:515–529

    Article  CAS  Google Scholar 

  13. Sherrill CD (2013) Acc Chem Res 46:1020–1028

    Article  CAS  Google Scholar 

  14. Schnell M, Erlekam U, Bunker PR, von Helden G, Grabow J-U, Meijer G, van der Avoird A (2013) Angew Chem Int Ed 52:5180–5183

    Article  CAS  Google Scholar 

  15. Schnell M, Erlekam U, Bunker PR, von Helden G, Grabow J-U, Meijer G, van der Avoird A (2013) Phys Chem Chem Phys 15:10207–10223

    Article  CAS  Google Scholar 

  16. Sanders JM (2010) J Phys Chem A 114:9205–9211

    Article  CAS  Google Scholar 

  17. Řezáč J, Hobza P (2008) J Chem Theory Comput 4:1835–1840

    Article  Google Scholar 

  18. Ding Y, Mei Y, Zhang JZ, Tao FM (2008) J Comput Chem 29:275–279

    Article  CAS  Google Scholar 

  19. Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207

    Article  CAS  Google Scholar 

  20. Wheeler SE, Houk KN (2009) Mol Phys 107:749–760

    Article  CAS  Google Scholar 

  21. Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854–10855

    Article  CAS  Google Scholar 

  22. Wheeler SE (2013) Acc Chem Res 46:1029–1038

    Article  CAS  Google Scholar 

  23. Wheeler SE (2011) J Am Chem Soc 133:10262–10274

    Article  CAS  Google Scholar 

  24. Watt M, Hardebeck LKE, Kirkpatrick CC, Lewis M (2011) J Am Chem Soc 133:3854–3862

    Article  CAS  Google Scholar 

  25. Sinnokrot MO, Sherrill CD (2004) J Am Chem Soc 126:7690–7697

    Article  CAS  Google Scholar 

  26. Sinnokrot MO, Sherrill CD (2003) J Phys Chem A 107:8377–8379

    Article  CAS  Google Scholar 

  27. Ringer AL, Sinnokrot MO, Lively RP, Sherrill CD (2006) Chem Eur J 12:3821–3828

    Article  CAS  Google Scholar 

  28. Ringer AL, Sherrill CD (2009) J Am Chem Soc 131:4574–4575

    Article  CAS  Google Scholar 

  29. Raju RK, Bloom JWG, An Y, Wheeler SE (2011) ChemPhysChem 12:3116–3130

    Article  CAS  Google Scholar 

  30. Lee EC, Hong BH, Lee JY, Kim JC, Kim D, Kim Y, Tarakeshwar P, Kim KS (2005) J Am Chem Soc 127:4530–4537

    Article  CAS  Google Scholar 

  31. Hohenstein EG, Duan J, Sherrill CD (2011) J Am Chem Soc 133:13244–13247

    Article  CAS  Google Scholar 

  32. Arnstein SA, Sherrill CD (2008) Phys Chem Chem Phys 10:2646–2655

    Article  CAS  Google Scholar 

  33. Raju RK, Bloom JWG, Wheeler SE (2013) J Chem Theory Comput 9:3479–3490

    Article  CAS  Google Scholar 

  34. Lee EC, Kim D, Jurecˇka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446–3457

    Article  CAS  Google Scholar 

  35. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741–758

    Article  CAS  Google Scholar 

  36. Seo J-I, Kim I, Lee YS (2009) Chem Phys Lett 474:101–106

    Article  CAS  Google Scholar 

  37. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction: evidence, nature, and consequences. Wiley-VCH, New York

    Google Scholar 

  38. Kwac K, Lee C, Jung Y, Han J, Kwak K, Zheng J, Fayer MD, Cho M (2006) J Chem Phys 125:244508–244516

    Article  Google Scholar 

  39. Nikolova V, Ilieva S, Galabov B, Schaefer HF III (2014) J Org Chem 79:6823–6831

    Article  CAS  Google Scholar 

  40. Zheng J, Kwak K, Asbury J, Chen X, Piletic IR, Fayer MD (2005) Science 309:1338–1343

    Article  CAS  Google Scholar 

  41. Saggu M, Levinson NM, Boxer SG (2011) J Am Chem Soc 133:17414–17419

    Article  CAS  Google Scholar 

  42. Saggu M, Levinson NM, Boxer SG (2012) J Am Chem Soc 134:18986–18997

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:289–300

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  47. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  48. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  49. Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996–2000

    Article  CAS  Google Scholar 

  50. Liu Y, Zhao J, Li F, Chen Z (2013) J Comput Chem 34:121–131

    Article  Google Scholar 

  51. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision, A. 02. Gaussian Inc., Wallingford

    Google Scholar 

  53. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  54. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, England

    Google Scholar 

  55. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  56. Zhou P-P, Qiu W-Y (2009) ChemPhysChem 10:1847–1858

    Article  CAS  Google Scholar 

  57. Zhou P-P, Qiu W-Y (2009) J Phys Chem A 113:10306–10320

    Article  CAS  Google Scholar 

  58. Zhikol OA, Shishkin OV, Lyssenko KA, Leszczynski J (2005) J Chem Phys 122:144104

    Article  Google Scholar 

  59. Quinonero D, Frontera A, Deya PM, Alkorta I, Elguero J (2008) Chem Phys Lett 460:406–410

    Article  CAS  Google Scholar 

  60. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) J Phys Chem A 108:10865–10872

    Article  CAS  Google Scholar 

  61. Kock U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  Google Scholar 

  62. Ebrahimi A, Habibi-Khorassani M, Gholipour AR, Masoodi HR (2009) Theor Chem Acc 124:115–122

    Article  CAS  Google Scholar 

  63. Czyżnikowska Ż, Góra RW, Zaleśny R, Lipkowski P, Jarzembska K, Dominiak P, Leszczynski J (2010) J Phys Chem B 114:9629–9644

    Article  Google Scholar 

  64. Keith TA (2009) AIMALL Version 09.11.29, aim.tkgristmill.com

  65. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  66. Su P, Li H (2009) J Chem Phys 131:014102–014115

    Article  Google Scholar 

  67. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  68. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794

    Article  CAS  Google Scholar 

  69. Gibbs GV, Cox DF, Rosso KM (2004) J Phys Chem A 108:7643–7645

    Article  CAS  Google Scholar 

  70. Arnold WD, Oldfied E (2000) J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  71. Fang D, Piquemal J-P, Liu S, Cisneros GA (2014) Theor Chem Acc 133:1484

    Article  Google Scholar 

  72. Liu SB (2013) J Phys Chem A 117:962–965

    Article  CAS  Google Scholar 

  73. Liu SB, Schauer CK (2015) J Chem Phys 142:054107

    Article  Google Scholar 

  74. Liu SB (2016) Acta Phys Chim Sin 32:98–118

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Grant No. 21403097) and the Fundamental Research Funds for the Central Universities (lzujbky-2014-182).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan-Pan Zhou or Shubin Liu.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, PP., Yang, X., Zhou, DG. et al. T-shaped phenol–benzene complexation driven by π-involved noncovalent interactions. Theor Chem Acc 135, 100 (2016). https://doi.org/10.1007/s00214-016-1863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1863-3

Keywords

Navigation