Skip to main content
Log in

Efficient calculation of the density response function from generalized polarizabilities

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a method to calculate the density response function (DRF), also known as the density response kernel or the polarization propagator in the static limit. Our method uses generalized polarizabilities (GPs) which are second derivatives of the molecular energy with respect to two arbitrary perturbations of the external electrostatic potential. They are generalizations of the common multipole polarizabilities. The latter use solid spherical harmonics as perturbing potentials, while GPs can use any function. We use a sine function expansion of the electrostatic potential. Generalized polarizabilities were originally introduced for a different project, ultrafast quantum/molecular mechanics calculations. By transforming the GPs to a (discretized) direct space representation, we obtain the DRF in the static limit. The method has been implemented for single-determinant (Hartree–Fock and density functional theory) wavefunctions, but can be generalized to more accurate wavefunctions. The number of coupled-perturbed self-consistent field (CP-SCF) calculations in our method is proportional to the molecular volume at a given spatial resolution, i.e., scales linearly with the system size, and is independent of the basis set size. The best previous method has the number of CP-SCF calculations proportional to the product of the number occupied and virtual orbitals, and therefore scaling quadratically with the system size at constant basis set quality. The diagonal elements of the DRF (local polarizabilities) of water and butadiene in the molecular plane are displayed. An example of non-diagonal DRF is presented for butadiene 0.77 Å above the molecular plane, with one point fixed over the midpoint of a C=C bond. We obtain a fairly localized DRF, even in this conjugated system. The values become quite small if the distance of the two local perturbations exceeds a bond length. By using frequency-dependent polarizabilities, one could readily calculate the dynamic DRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maaskant WJA, Oosterhoff LJ (1964) Mol Phys 8:319

    Article  Google Scholar 

  2. Hunt KLC (1983) J Chem Phys 78:6149

    Article  CAS  Google Scholar 

  3. Stone AJ (1985) Mol Phys 56:1065

    Article  CAS  Google Scholar 

  4. Berkowitz M, Parr RG (1988) J Chem Phys 88:2554

    Article  CAS  Google Scholar 

  5. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  6. Casida EM (1995) In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, pp 155–193

    Chapter  Google Scholar 

  7. Petersilka M, Gossman UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    Article  CAS  Google Scholar 

  8. Furche F (2001) J Chem Phys 114:5982

    Article  CAS  Google Scholar 

  9. Ayers PW, Parr RG (2001) J Am Chem Soc 123:2007

    Article  CAS  Google Scholar 

  10. Liu S, Li T, Ayers PW (2009) J Chem Phys 131:114106

    Article  Google Scholar 

  11. Sablon N, De Proft F, Solá M, Geerlings P (2010) Chem Phys Lett 498:192

    Article  CAS  Google Scholar 

  12. Ángyán JG (2011) Curr Org Chem 15:3609

    Article  Google Scholar 

  13. Yang W (1988) Phys Rev A 38:5512

    Article  CAS  Google Scholar 

  14. Cohen HH, Ganduglia-Pirovano MV, Kudrnovsky J (1995) J Chem Phys 103:3543

    Article  CAS  Google Scholar 

  15. Senet P (1997) J Chem Phys 107:2516

    Article  CAS  Google Scholar 

  16. Ayers PW (2001) Theor Chem Acc 106:271

    Article  CAS  Google Scholar 

  17. Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, Oxford

    Book  Google Scholar 

  18. Le Sueur CR, Stone AJ (1993) Mol Phys 78:1267

    Article  Google Scholar 

  19. Misquitta AJ, Stone AJ (2006) J Chem Phys 124:024111

    Article  Google Scholar 

  20. Hättig C, Jansen G, Hess BA, Ángyán JG (1896) Can J Chem 74:976

    Article  Google Scholar 

  21. Rob F, Szalewicz K (2013) Chem Phys Lett 572:146

    Article  CAS  Google Scholar 

  22. Morita A, Kato S (1997) J Am Chem Soc 119:4021

    Article  CAS  Google Scholar 

  23. Morita A, Kato S (2002) J Phys Chem A 106:3909

    Article  CAS  Google Scholar 

  24. Hu H, Yang W (2008) Annu Rev Phys Chem 59:573

    Article  CAS  Google Scholar 

  25. Savin A, Colonna F, Allavena M (2001) J Chem Phys 115:6827

    Article  CAS  Google Scholar 

  26. Bratož S (1958) Colloq Int CNRS 82:287

    Google Scholar 

  27. Gerratt J, Mills IM (1968) J Chem Phys 49:1719

    Article  Google Scholar 

  28. Yang W, Cohen A, De Proft F, Geerlings P (2012) J Chem Phys 136:144110

    Article  Google Scholar 

  29. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989

    Article  CAS  Google Scholar 

  30. Janowski T, Pulay P (2009) Intern J Quantum Chem 109:2113

    Article  Google Scholar 

  31. Janowski T, Wolinski K, Pulay P (2012) Chem Phys Lett 530:1

    Article  CAS  Google Scholar 

  32. Jorgensen WL, Tirado-Rivers J (2005) J Comput Chem 26:1689

    Article  CAS  Google Scholar 

  33. Koide A (1976) J Phys B Atom Mol Phys 9:3173

    Article  CAS  Google Scholar 

  34. Pople JA, Raghvachari K, Schlegel HB, Binkley JS (1979) Int J Quantum Chem Symp 13:225

    CAS  Google Scholar 

  35. Pulay P (1987) Adv Chem Phys 67:241

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation under Grant number CHE-1213870. It was also supported by the National Institutes of Health under grant number GM103450, the Arkansas Biosciences Institute, and the Mildred B. Cooper Chair in Bioinformatics and Computational Research at the University of Arkansas. We acknowledge the resources of the Arkansas High Performance Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pulay.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janowski, T., Wolinski, K. & Pulay, P. Efficient calculation of the density response function from generalized polarizabilities. Theor Chem Acc 135, 6 (2016). https://doi.org/10.1007/s00214-015-1761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1761-0

Keywords

Navigation