Skip to main content
Log in

Mechanistic study of bismuth-catalyzed direct benzylation of 2,4-pentanediones: the case of BiCl3 and generalization

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

At present, we investigate the mechanisms for bismuth-catalyzed direct benzylation of 2,4-pentanediones using various density functional theories and post-Hartree–Fock ab initio methods. First, we deeply consider the role of BiCl3, where six scenarios are proposed. All of them start with the formation of a weakly bound complex between the BiCl3 catalyst and the alcohol or the dione. The most favorable one corresponds to the direct access to the products via a unique transition state (SN2-type mechanism). We also examined the effects of various nonpolar and polar solvents, which are viewed to slightly affect the energy profiles for SN2 and internal nucleophilic substitution (SNi) types of mechanism, whereas strong perturbations are observed for SN1 mechanism. For instance, the later one becomes the most thermodynamically favorable in DMSO solvent. In addition, several classes of benzyl alcohols and catalysts (BiX3, where X = Cl, Br, I, NO3, and OTf) were considered within the framework of SN2 and SNi mechanisms. The reactivity of these alcohols increases going from primary to secondary to tertiary. These findings are in line with the present available experimental results. Finally, our computations suggest that Bi(NO3)3 could be an excellent catalyst for the title reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samajdar S, Becker FF, Banik BK (2001) Synth Commun 31:2691

    Article  CAS  Google Scholar 

  2. Tymonko SA, Nattier BA, Mohan RS (1999) Tetrahedron Lett 40:7657

    Article  CAS  Google Scholar 

  3. Coin C, Zevaco T, Dunach E, Postel M (1996) Bull Soc Chim Fr 133:913

    CAS  Google Scholar 

  4. Komatsu N, Taniguchi A, Uda M, Suzuki H (1996) Chem Commun 1847

  5. Sabitha G, Babu RS, Reddy EV, Yadav JS (2000) Chem Lett 9:1074

    Article  Google Scholar 

  6. Cong X, Hu F, Liu K-G, Liao Q-J, Yao Z-J (2005) J Org Chem 70:4514

    Article  Google Scholar 

  7. Bajwa JS, Vivelo J, Slade J, Repic O, Blacklock T (2000) Tetrahedron Lett 41:6021

    Article  CAS  Google Scholar 

  8. Boruah A, Baruah B, Prajapati D, Sandhu JS (1997) Synlett 11:1251

    Article  Google Scholar 

  9. Laurent-Robert H, Garrigues B, Dubac J (2001) Synlett 1160, Err 564 (2001)

  10. Subba Reddy BV, Srinivas R, Yadav JS, Ramalingam T (2001) Synth Commun. 31:1075

    Article  Google Scholar 

  11. Komatsu N, Ishida J, Suzuki H (1997) Tetrahedron Lett 38:7219

    Article  CAS  Google Scholar 

  12. Ramalinga K, Vijayalakshmi P, Kaimal TNB (2001) Synlett 6:863

    Article  Google Scholar 

  13. Monk KA, Sarapa D, Mohan RS (2000) Synth Commun 30:3167

    Article  CAS  Google Scholar 

  14. Keramane E, Boyer B, Roque J-P (2001) Tetrahedron 57:1909

    Article  CAS  Google Scholar 

  15. Repichet S, Le Roux C, Dubac J, Desmurs JR (1998) Eur J Org Chem 1998:2743

    Article  Google Scholar 

  16. Le Roux C, Dubac J (2002) Synlett 2:181

    Article  Google Scholar 

  17. Rueping M, Nachtsheim BJ, Kuenkel A (2007) Org Lett 9:825

    Article  CAS  Google Scholar 

  18. Godeau J, Fontaine-Vive F, Antoniotti S, Duñach E (2012) Chem Eur J 18:16815

    Article  CAS  Google Scholar 

  19. Rueping M, Nachtsheim BJ, Ieawsuwan W (2006) Adv Synth Catal 348:1033

    Article  CAS  Google Scholar 

  20. Leonard NM, Wieland LC, Mohan RS (2002) Tetrahedron 58:8373

    Article  CAS  Google Scholar 

  21. Hua RM (2008) Curr Org Synth 5:1

    Article  CAS  Google Scholar 

  22. Ollevier T (ed) (2012) Bismuth-mediated organic reactions. Topics in current chemistry, Springer, Heidelberg

    Google Scholar 

  23. Ollevier T (2013) Org Biomol Chem 11:2740

    Article  CAS  Google Scholar 

  24. Yasuda M, Somyo T, Baba A (2006) Angew Chem Int Ed 45:793

    Article  CAS  Google Scholar 

  25. Jana U, Biswas S, Maiti S (2007) Tetrahedron Lett 48:4065

    Article  CAS  Google Scholar 

  26. Bisaro F, Pretat G, Vitale M, Poli G (2002) Synlett 11:1823

    Google Scholar 

  27. Masahiro N, Yosuke K, Keitaro I (2007) J Org Chem 72:5161

    Article  Google Scholar 

  28. Sanderson J, Bayse CA (2008) Tetrahedron 64:7685

    Article  CAS  Google Scholar 

  29. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  30. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669

    Article  CAS  Google Scholar 

  31. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, 2013

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  34. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  35. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  36. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  37. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  38. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  39. Dunning TH Jr, Hay PJ (1977) In: Schaefer III HF (ed) Modern theoretical chemistry. Plenum: New York, 1977, vol 3, pp 1–28

  40. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  41. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  42. Woon DE, Dunning TH Jr (1993) J. Chem. Phys. 98:1358

    Article  CAS  Google Scholar 

  43. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  44. Dunning TH Jr, Hay PJ (1977) In: Schaefer III HF Methods of electronic structure theory, Plenum Press, vol. 2

  45. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  46. Hay PJ, Wadt WR (1985) J. Chem. Phys. 82:299

    Article  CAS  Google Scholar 

  47. Weinhold F, Carpenter JE (1988) In: Naaman R, Vager Z (eds) The structure of small molecules and ions. Plenum, 1988, pp. 227–236

  48. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  49. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 46:41

    Article  CAS  Google Scholar 

  50. Chattaraj PK, Parr RG (1993) In: Sen KD, Mingos DMP (eds) Chemical hardness, structure and bonding. Springer: Berlin, vol. 80, pp. 11–25

  51. Boussouf K, Boulmene R, Prakash M, Komiha N, Taleb M, Mogren Al-Mogren M, Hochlaf M (2015) Phys Chem Chem Phys 17:14417

    Article  CAS  Google Scholar 

  52. Marcus Y (1999) The properties of solvents, vol. 4, Wiley, England,‎ p 239. ISBN 978-0-471-98369-9, LCCN 98018212

  53. Breidung J, Theil WJ (1992) Comput Chem 13:165

    Article  CAS  Google Scholar 

  54. Schwerdtfeger P, Hunt P (1999) Adv Mol Str 5:223

    Article  CAS  Google Scholar 

  55. Schultz G, Kolonits M, Hargittai M (1999) Struct Chem 10:321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Tunisian Ministry of Higher Education and Research and by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program under Grant No PIRSES-GA-2012-31754, the COST Action CM1405 MOLIM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Boughdiri, R. Linguerri or M. Hochlaf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrath, K., Boughdiri, S., Linguerri, R. et al. Mechanistic study of bismuth-catalyzed direct benzylation of 2,4-pentanediones: the case of BiCl3 and generalization. Theor Chem Acc 135, 2 (2016). https://doi.org/10.1007/s00214-015-1758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1758-8

Keywords

Navigation